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ABSTRACT 

 

 

Sandia National Laboratories has successfully operated fast burst reactors over the past 

four decades.  Fast burst reactors refer to a type of reactor that is able to achieve intense 

neutron pulses in very short periods of time using fissile material.  Typically these 

systems are comprised of enriched metallic uranium fuel.  During operation of a fast 

burst reactor, a phenomena known as a pre-initiation has been known to take place.  A 

pre-initiation occurs when the neutron population exceeds some fiducial prior to 

achieving the final reactivity state in a pulse operation.  Reactivity is determined from the 

physical configuration of the reactor and governs the average neutron population 

behavior.  The purpose of this study is to examine the probability of initiation (or the pre-
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initiation probability) for a fast burst type of system, with emphasis on the Sandia Pulse 

Reactor-III (SPR-III) for physics parameters.  The magnitude of the pre-initiation 

problem for SPR-III was examined to establish the magnitude of the phenomena.  This 

work focuses on developing and numerically solving an equation that describes the non-

extinction probability in a prompt critical assembly when the population is so low that it 

deviates from the average behavior. 

 

A zero dimensional (0-D) model is derived to describe the neutron non-extinction 

probability in a system where the reactivity is changing as a function of time.  Analytical 

solutions to the model are provided where solutions could be found.  Numerical solutions 

were obtained for a variety of cases applicable to fast burst reactor operation.  Use of 0-D 

Monte Carlo techniques is also presented as a means to examine the low population 

stochastic behavior and for comparison to the deterministic solution.  The 1-D time 

dependent equation for slab geometry was evaluated to highlight the importance of 

neutron leakage.  The non-extinction probability equation was solved using a modified 

form of the standard fixed point iteration method.  Other iteration techniques were also 

analyzed.  Particular emphasis was extended to a linearized routine since the performance 

can be analyzed analytically and it allows for development of acceleration techniques.  

An accelerated routine was then developed and analyzed.  The numerical performance 

between the iteration routines was thoroughly investigated.  The impact of the 

acceleration routine on the iteration count and the associated decrease in runtime was 

evaluated. 
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CHAPTER 1: INTRODUCTION 

 

Fast burst reactors (FBRs) have been in operation for many decades with the 

demonstration of the first fast burst assembly named the Dragon Experiment (Frisch 

1969).  The successful use of these machines has lead the way for their operation as 

critical experiments, used for determination of physics constants, as well as operation as 

an irradiation source.  The Sandia Pulse Reactors (SPR I-III) have been primarily used 

for their irradiation capability, in particular SPR-III with its large central cavity for 

irradiating objects.  FBRs can be operated in a steady state mode at low powers (typically 

a few kW) or in a pulse mode where high transient powers (~10 MW-sec) are feasible for 

short periods of time.  During operations in pulse mode some fast burst reactors have 

been shown to undergo a pre-initiation event.  Understanding this pre-initiation event was 

the primary driver behind this work.  For experimental operations, a pre-initiation refers 

to a prompt critical excursion taking place prior to the final desired reactivity state being 

reached.  Prompt critical refers to the point at which the reactor will operate on prompt 

neutrons.  Any delayed neutrons from fission have sufficiently long half-lives that they 

are not important to the reactor kinetics in the initial pulse buildup. 

 

Pre-initiation events result in lower yield pulses but do not pose any safety risk to the 

reactor.  In these types of systems low background neutron levels are desired such that 

during assembly of the fissile mass an excursion does not occur prior to the final 

reactivity state being reached.  If the background neutron level is of sufficient intensity, 

the fissile mass has a larger probability of one of these source neutrons leading to a 
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divergent chain.  Eventually a source neutron will cause a divergent neutron chain to 

form if the system is above prompt critical.  The rate at which these chains buildup is 

commonly known as the reactor period; in particular, when the number of neutrons is 

large enough to be considered deterministic.  For all assemblies below prompt critical 

with a source present, an individual fission chain must eventually die off.  For assemblies 

operating above prompt critical, on the average, a persistent fission chain will always 

exist which initiates the excursion unless there are no sources of neutrons in the system.  

Due to the stochastic nature of individual chains at low neutron densities, the reactor may 

be quiescent for some time until a persistent, divergent chain is developed.  Depending on 

the assembly and the background neutron level, it is well known that systems may be idle 

for up to several seconds before a persistent fission chain develops.  Waiting for a pulse 

to occur does not change the overall yield of the reactor; rather from a safety perspective 

it represents a period of time in which additional excess reactivity could be accidentally 

added. 

 

In an ideal system the background source strength would be sufficiently low to allow for 

the final reactivity state to be reached before the pulse ensued; yet, not so low that excess 

reactivity states could be achieved.  Most reactor systems have sufficient excess 

reactivity in order to accommodate large negative worth experiments.  To ensure the safe 

operation of these machines, near zero background source strengths are not desired as the 

maximum over pulse (inadvertently inserting too much reactivity resulting in a larger 

pulse than intended) used in accident analysis to determine accident consequences greatly 

increases. 
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Operation of SPR requires the assembly of a large quantity of fissile material and external 

reflectors rapidly.  As the pulse ensues, inherent passive design features then terminate 

the excursion to ensure safe operation back to ambient conditions.  The prompt 

excursions occur so quickly that there is insufficient time for delayed neutrons to make an 

appreciable appearance or have any impact on the reactor kinetics during pulse buildup. 

 

This study began with an examination of the previous operating history for the SPR-III 

reactor.  Of the available data applicable to this work, examination of operating logs was 

performed to illustrate the magnitude of the pre-initiation rate for SPR.  Some of these 

results are provided in Appendix A.  Beyond these experimental results, the focus of this 

work was on the theoretical treatment of the non-extinction probability due to limited 

reactor availability at the time of this writing.  In particular, a 0-D system was initially 

considered and relevant equations were derived to describe the resulting non-extinction 

probability.  Analytical and numerical results were generated for the 0-D case to illustrate 

behaviors for the physics of interest.  In particular, cases were considered for static and 

dynamic reactivity in conjunction with external source treatment.  The results were 

generated with FBR behavior in mind; yet the entire multiplication factor range was also 

analyzed for completeness.  In addition a 0-D time dependent Monte Carlo code was 

written to investigate the applicability of the technique for solving the pre-initiation 

problem.  Given that the Monte Carlo work faithfully transports entire chains to either 

death or “divergence” additional time dependent behaviors may be assessed.  Divergence 

is also used loosely as one must truncate fission chains due computational limitations.  
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From the general form of the non-extinction probability equation, consideration was then 

extended to a 1-D slab system.  Although not identical to the SPR geometry, analysis of a 

slab provides a better understanding of the importance of the initial neutron injection 

position and angle.  The 1-D equation solved was also monoenergetic in nature.  Since 

most FBRs rely on fast fission, the monoenergetic approximation is not too limiting.  

Even more important, the focus of this work was to examine the non-extinction 

probability from a first principles perspective.  Inclusion of multiple energy groups is 

straightforward and thoroughly documented in the open literature for the standard 

transport equation.  Using the 1-D equation, various iteration routines were investigated.  

Due to the non-linearity of the non-extinction probability equation, the performance of 

the different routines was thoroughly investigated.  A linearized routine was implemented 

to accommodate theoretical analysis.  In addition, linearizing the equation allows one to 

implement acceleration techniques.  Due to the performance of the iteration routine, an 

acceleration scheme was explored to speed up the computational runtime. 

 

Sandia National Laboratories was the sponsor behind this work, in particular the 

department which supports the safety basis for operation of SPR and other Sandia 

reactors.  Although the focus of this work is an independent study of the operation and 

physics behind the reactor, some efforts were extended to support the safety basis of the 

machine. 
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1.1 Definitions 

 

The phrase pre-initiation, probability of initiation, and non-extinction probability are 

often used loosely in many works but can have different meanings depending of the 

application.  Some discussion of these terms is warranted as their use in this document is 

both explicit and intentional. 

 

 Pre-Initiation 

 

Pre-initiation is defined by an experimentally derived definition taken from Sandia’s 

operational experience on SPR.  Pre-initiation for reactor operations refers to pulse 

experiments in which the neutron density reaches sufficiently high values before all the 

intended prompt reactivity can be inserted into the machine.  Note that this definition 

takes advantage of knowledge of the neutron density and the reactivity insertion time; 

both of which may be arbitrarily chosen based on operational experience.  

Experimentally, it is impossible to measure when a divergent chain has developed.  At 

SPR where fission chambers are used to measure fissions (or power), it is leakage 

neutrons and subsequent fissions in the detector that determines the power in the 

machine.  If a single neutron is injected into the assembly and it leads to a divergent 

chain, there is no way to discern a difference if it took multiple neutron injections to lead 

to the divergent chain; information of which neutron caused the divergent chain is 

unknown.  For experimental purposes, this detailed knowledge is not needed.  A pre-

initiation has occurred when a large number (arbitrarily assigned) of neutrons have built 
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up in the assembly before the assembly has reached the full reactivity state.  At SPR this 

refers to the buildup occurring prior to one of its reflectors being fully inserted.  What 

upper limit on power is chosen is arbitrary, for SPR-III this value was taken to be ~50 W 

or 3.7*1012 n/s (Ford 2008) 

 

 Probability of Initiation (POI) 

 

The probability of initiation (POI) refers to the probability that an injected source neutron 

has multiplied and its progeny have lead to a divergent chain at infinite time.  The 

primary difference between pre-initiation and POI lies with when the initiation event is 

said to have taken place and at what population divergence is assessed.  It will be shown 

later that if one waits long enough from the initial source neutron injection time, there are 

two possible end states.  Either the source neutron will have multiplied to a sufficient 

state that a divergent chain has been obtained or the initial neutron and its progeny have 

died away.  The ratio of the number that lead to divergent chains to those injected may be 

taken to be the POI.  Unlike the pre-initiation probability, the POI definition is 

independent of neutron levels and only is valid for long times (infinite to be exact) from 

insertion.  This may be expressed mathematically as ( )∞=
∞→ NEt

PPOI lim , where ( )∞NEP  is 

the non-extinction probability at infinite time. 
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 Extinction/Non-extinction probability 

 

The extinction and non-extinction probability are the primary focus in this work.  They 

are not limited to a single neutron; rather, they are focused on the progeny from the initial 

parent.  With a source neutron injected into a system, the probability that it and its 

subsequent progeny have become extinct at some later time is defined as the extinction 

probability (Harris 1989).  The non-extinction probability can be taken to be the 

complementary event.  Namely, given a source neutron injected at some time, the non-

extinction probability describes the probability that either the source neutron or any of its 

progeny are still present at some later time.  There is no knowledge as to the numbers of 

neutrons present at these times; merely that at least one exists. 

 

 Source Non-extinction probability 

 

The source non-extinction probability is closely related to the non-extinction probability.  

The non-extinction probability discussed above was focused on the probability that a 

chain has not become extinct from a given single neutron injection point.  The source 

non-extinction probability is focused on the probability that a chain has not become 

extinct given multiple source neutrons randomly injected into the system.  For low 

numbers of neutrons, it is assumed that each injection can be treated independently of one 

another.  Thus the source non-extinction probability examines the probability that any of 

the chains have not become extinct following the injection of multiple neutrons into a 

medium at some time. 
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CHAPTER 2: MOTIVATION AND DATA 

 

Over the years, the theory behind stochastic neutronics has been well studied.  The 

principle behind stochastic neutronics related to this work may have been first 

investigated by Feynman with his paper on statistical behavior of neutron chains 

(Feynman 1946).  In addition Courant and Wallace also expanded the initial knowledge 

base with their paper on fluctuations of neutrons in a reactor (Courant 1947).  Treatment 

of an assembly under weak source conditions was investigated by Hansen with his paper 

on an assembly with a weak source (Hansen 1960).  Hansen’s work was focused on 

trying to determine the probability distribution in time for a neutron population in a 

supercritical system with the injection of one source neutron.  One of the most useful 

aspects of the paper was what Hansen defines as a weak source condition.  His weak 

source formula is: 

 12

2

<<
Γυ
τS  (1) 

 

where:  is the source strength in neutrons per second (n/s) S

 τ  is the mean neutron lifetime (s) 

 υ  is the average number of neutrons emitted per fission 

  is defined by 2Γ
( ) 8.01

22 ≈
−

=Γ
υ
υυ , ( )1−υυ  provides a measure of the width of 

 the Gaussian fission neutron emission distribution 
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Assuming a mean neutron lifetime of ~10 nanoseconds (ns), the weak source condition 

would be satisfied if the source strength is much less than 108.  The weak source metric 

was provided to qualitatively understand where one is within a stochastic regime. 

 

In Hansen’s work, focus on the requirement to meet weak source conditions was 

described and the fission probability distribution in time for either a ramp or step 

insertion of reactivity was evaluated.  One of the shortcomings of Hansen’s model was 

that the probability of a persisting chain is treated stochastically, but the subsequent 

multiplication of the fission chains through ν  is not stochastic and the resulting process 

was treated deterministically.  This apparent treatment will tend to narrow the probability 

distribution of neutrons as it ignores the stochastic buildup which can take place over 

longer time frames.  Pal was one of the first to make use of the probability balance 

equations (Pal 1962).  In 1963, Bell independently developed the probability distribution 

equations for the number of neutrons and delayed precursors in a multiplying assembly 

(Bell 1963).  The paper was primarily focused on an assembly brought to a supercritical 

state under weak source conditions.  The generating function method is used to transform 

and simplify the probability balance equation such that it can be solved.  Bell extended 

the work to develop the probability of exactly  neutrons being present in a fissile 

system as a function of time, or 

N

( )tPN , in a more rigorous fashion (Bell 1965).  For 

simplistic assumptions, a few solutions are outlined in his work, of interest are the zero 

source with initial neutron injection and constant source cases.  Bell and Lee published a 

paper for the probability of initiating a persistent fission chain (Bell 1971).  They derive 

an integro-differential equation for the non-extinction probability as a function of space, 
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energy, and time.  For a time independent case, a problem was solved for a simple 

stationary system using a λ iteration scaling factor.  Lewins has also published a number 

of papers over the years relating to stochastic fluctuations and adjoint equations (Lewins 

1960a, 1960b, 1978, 1981). 

 

Williams published a text on stochastic process in nuclear reactors (Williams 1974).  He 

provides the forward balance equation and discussion is provided for the “birth and 

death” problem.  Although stochastic neutronics have been fully studied in the field of 

reactor noise, the application and theory is different for time dependent non-extinction 

probability calculations. 

 

Only within the past few years have additional reports been published on the subject.  

Monte Carlo techniques to analyze initiation probabilities were performed by Méchitoua 

(Méchitoua 2000).  Monte Carlo methods are ill-suited to solve the initiation probability 

(this will be addressed in a subsequent chapter), Méchitoua attempts to derive a metric to 

determine if the neutron chain will ultimately diverge.  Since computers cannot track an 

infinite or very large number of neutrons (which could eventually die away), use of any 

metric to define an infinite chain induces some bias.  The Lawrence Livermore National  

Laboratory has recently implemented a probability of initiation capability into their 

parallel processor, continuous energy Monte Carlo code MERCURY (Greenman 2007).  

Also, Humbert has provided two papers, of interest is the use of the 2-D PANDA 

deterministic code (Humbert 2000, 2003).  The latter paper presents results for the 

probability of initiation as a spatial and temporal function in a highly super prompt 
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critical mass ( ρ  > $13).  Humbert et. al., recently looked at using PANDA to model the 

Caliban reactor which is similar in design to SPR-II (Humbert 2004).  This work also 

looked at experimental data for comparison to a point model for the mean burst wait time.  

In addition, Nolen published a work that was geared towards Monte Carlo solutions using 

the MC++ code and was limited to subcritical assemblies (Nolen 2000).  From Nolen’s 

work in subcritical systems, the probability of observing an infinitely long neutron chain 

length tends to zero.  The Los Alamos National Laboratory has implemented the time 

independent probability of initiation capability into their PARTISN code (Baker 2005).  

Recently the time dependent capability was extended into PARTISN. 

 

This work was geared towards a foundational buildup of the theory and then through the 

use of numerical analysis apply it to weakly prompt critical systems.  The focus of the 

modeling effort was to fully understand the fundamentals of the theory and the 

application, an area which has not been well documented in the open literature.  An 

additional focus of this work will be to examine the time importance of the reactivity 

insertion and the overall impact on the non-extinction probability. 
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2.1 Sandia Pulse Reactor-III 

 

Sandia National Laboratories has successfully operated the SPR-I, SPR-II, and SPR-III 

fast reactor systems.  During the time of this research, SPR-III was operational; but the 

security costs proved to be sufficiently great that the reactor has since been shutdown.  To 

understand the operation of the reactor which was the driver of this work, a brief 

description of the reactor and the parameters of interest to this work are provided below. 

 

2.2 SPR-III Background 

 

The SPR-III reactor is composed of a number of high enriched U-10Mo (wt%) fuel 

plates.  These plates are combined into two separate core halves.  The fuel plates are 

brought together to achieve a sub delayed critical assembly; meaning that both core 

halves are marginally subcritical when brought together.  The reactivity of the machine is 

adjusted with multiple reflector elements on the outside of the reactor.  These reflector 

elements are the means of adjusting reactivity into the prompt regime.  A cutaway view 

of the reactor is shown below. 
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Figure 1: Graphical view of the SPR-III reactor. 

 

In the cutaway, one can see the bolts used to hold the fuel plates together.  The two core 

halves are shown assembled in the figure.  In addition, the central irradiation cavity is 

seen and the external shroud.  A photograph (Figure 2) of the reactor assembly is 

provided below with the safety block, the lower core half, decoupled (i.e. lowered).  

During free field operations, the experiment shroud is typically on.  The shroud is boron 

loaded to minimize room return neutrons.  The figure below has the shroud removed for 

viewing of the fuel plates and reflector elements.  Note the separation distance of the two 

core halves. 
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Figure 2: Picture of the SPR-III reactor with the experiment shroud removed. 

 

The figure shows the reactor stand and associated wiring/support systems.  In addition, 

one can see three of the four reflector elements on the outer circumference of the fuel.  

Although not shown in the figure, there is an external source located at the bottom of the 

stand in a shielded pig.  When needed, the source is pneumatically driven to the outside 

of the core to initiate multiplication.  During pulse operations the source is in its shielded 

location beneath the reactor. 

 

The SPR-III reactor has successfully performed over 13,000 operations.  These 

operations are a mix of both short steady state runs as well as pulse operations.  The 

following figure illustrates the number of operations per year since its inception. 
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SPR-III Operating History
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Steady State Pulse Pre-initiations  
Figure 3: SPR-III operating history. 

 

The figure also denotes the number of recorded pre-initiations per year.  The overall 

number of pre-initiations was relatively low for this reactor, yet it was an observable 

phenomena.  If the number of pre-initiations is divided by the total number of pulse 

operations over the years, the experimental pre-initiation probability is ~7.8%.  Note that 

this probability represents the average over many experiment operations.  Most of these 

operations involved an experiment within the central cavity.  The free field pre-initiation 

probability may be different. 

 

The overall pre-initiation probability is sufficiently high to be a nuisance to the reactor 

operations staff/experimenters as the experiments may need to be re-performed or must 

suffer from the lower reactor yield and broader pulse widths.  This can lead to costly 
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experiment components/parts due to repetition of the experiment.  Data mining efforts 

were performed to extract information for both free field and different experiments.  See 

Appendix A for more details.  This information was included in an appendix as it 

provides emphasis for the work as a whole; other important data for extension to SPR 

was gathered and is not reported. 

 

2.3 Background Neutron Sources 

 

There are two large contributing factors to the modest but non-trivial pre-initiation rate at 

SPR.  The first is the inherent background neutron source.  There are several sources 

from where the neutrons originate with the largest source coming from spontaneous 

fission neutrons within the reactor itself.  Although the reactor fuel is highly enriched U-

235, the physical mass of the system drives a non-trivial quantity of U-238 which has a 

relatively high spontaneous fission rate.  It has been estimated that there are about 5,000 

n/s (with multiplication) from spontaneous fission in the core with the reactor at -$15 

(Ford 2005).  The other contributing factor to the pre-initiation rate comes from the 

assembly time of the reactor system.  In order to escape the pre-initiation phenomena, the 

reactor must be quickly assembled.  For SPR-III, an aluminum reflector element must be 

driven full up to reach the final reactivity state.  Due to the transit time, the random 

neutron levels in the core may build up prior to the reactor reaching its final reactivity 

state. 
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Assessing the background neutron source for SPR was of importance in order to 

determine the associated impact on the kinetic behavior.  Knowledge of the average 

background source strength was necessary as the pre-initiation probability increases with 

source strength. 

 

The spontaneous fission rates for U-235 and U-238 are shown in the table below. 

 

Table 1: Spontaneous fission rates for uranium. 
Spontaneous fission rate (fissions/g/sec) Reference: 

U-235 U-238 
ANL-5800 8.0*10-4 1.6*10-2 
Etherington, 1958 3.1*10-4 7.0*10-3 

 

For SPR-III which has a reported fuel mass of 258 kg (232 kg U) this equates to ~181 

fissions/sec un-multiplied (using the Etherington data).  The SPR-III safety basis cites 

470 n/sec un-multiplied which agrees with the Etherington data if υ  is factored in. 

 

For SPR a neutron source was required during startup conditions to ensure that sustained 

fission chain results (and multiplication) can be monitored before a supercritical 

assembly is achieved.  The SPR neutron source is on the order of 1*106 n/s but is not 

used during a pulse operation. 
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2.4 Nuclear Data 

 

Prior to delving into the theory, some discussion on nuclear data is warranted.  Several 

have published fission neutron multiplicity data in tabular format.  These include the 

works by Diven (1955), Terrell (1957), Holden (1988), and Frehaut (1988).  This tabular 

data is repeated below as it is used heavily in this analysis. 

 

Table 2: Fission multiplicity data. 
ν Diven (1955) Holden (1988) Frehaut* (1988) 
0 0.027 ± 0.007 0.0317 ± 0.0015 0.0425 
1 0.158 ± 0.004 0.1720 ± 0.0014 0.1685 
2 0.339 ± 0.014 0.3363 ± 0.0031 0.3246 
3 0.305 ± 0.015 0.3038 ± 0.0004 0.2990 
4 0.133 ± 0.013 0.1268 ± 0.0036 0.1270 
5 0.038 ± 0.009 0.0266 ± 0.0026 0.0330 
6 -0.001 ± 0.003 0.0026 ± 0.0009 0.0047 
7 0.001 ± 0.002 0.0002 ± 0.0001 0.0006 
ν  2.47 ± 0.03 2.413 ± 0.007 2.420 

* Normalized to one and adjusted to preserve ν  (Nolen 2000). 
 

For computation of constants used later in this work, the Frehaut data set is used.  In 

addition to the fission multiplicity data some discussion of neutron cross-sections is also 

needed.  The figure below plots the U-10Mo neutron cross-section which was produced 

using MCNP5 (LA-UR-03-1987 2003).   
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Figure 4: U-10 Mo Neutron cross-sections. 

 

The total, absorption, elastic scattering, and fission cross-section are shown above.  For a 

fast metal system, the resulting neutron spectrum is “hard”.  The average energy of 

fission neutrons is ~1.98 MeV and the peak of the emission curve corresponding to the 

most probable energy is ~0.73 MeV (Lamarsh 2001).  One can see that at these energies, 

elastic scattering is the dominant reaction followed by fission.  For this work the total 

cross-section was taken to be 6 barns.  The scattering cross-section was taken to be 5 

barns, the fission cross-section 0.9 barns, and the capture cross-section 0.1 barns.  There 

is little change in the cross-section data around the fission spectrum indicating that a one 

group model may be sufficient for analysis. 
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CHAPTER 3: THEORY 

 

This section of the work outlines the theory used to analyze stochastic neutronics 

including the non-extinction probability.  Williams (1974) points out that the 

foundational concepts with population fluctuations were not developed by neutron 

physicists, but rather by biologists and naturalists, namely Galton and Watson in 1874.  

For reactor systems, there are two particular areas where stochastic neutronics receive 

particular attention.  The first is found with noise when the reactor is at power.  The 

second, and more prominent for FBRs, is geared towards the initial fluctuations seen in 

power during reactor startup.  The time associated for buildup to a steady reactor power is 

not consistent if operating under weak source conditions.  Thus even if the same 

sequence of steps are followed at the exact same time, the overall time to buildup to some 

power level differs.  A balance is to be played as reactor operations prefer sufficiently 

low source strengths to ensure a pre-initiation does not occur, while nuclear safety 

requirements dictate exactly the opposite.  The theory below was developed for stochastic 

neutronic buildup in prompt critical systems.  It is geared around prompt neutrons only; 

although delayed neutrons can be readily incorporated into the balance equations.  Given 

the short period of time SPR sits at prompt critical, neglecting delayed neutrons is an 

adequate assumption.  The theory begins by developing relationships that describe the 

probability of exactly  neutrons present in an assembly.  In order for the relationship to 

be evaluated, the analysis will be extended to any number of neutrons being present via 

generating functions. 

N
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3.1 Stochastic Behavior 

 

The variability of the overall yield in a pulse and the time at which the pulse occurs in a 

reactor is known to vary quite randomly.  This behavior is primarily attributable to the 

fission process.  Namely, the number of neutrons per fission is a random variable.  

Although the mean number of neutrons per fission is typically used in standard reactor 

theory, fission chains see localized increases/decreases in the overall population from the 

number of neutrons emitted per fission.  Secondly, the time in which reaction events 

occur in a medium is a random variable.  In reactor theory the assumption is commonly 

made that reaction events occur proportionally to the average neutron lifetime in the 

medium.  Finally, the type of reaction event that is chosen is also variable.  Although the 

average probability of different events occurring is known though reaction cross-section 

data, localized increases/decreases in a fission/capture reaction can cause variations in the 

chain population (Williams 1974). 

 

Neutrons can be said to behave stochastically if the population of those neutrons in the 

assembly is sufficiency low.  A Markov process is one in that the chance of an event 

being recorded within a small time interval tΔ  is independent of the states at previous 

times (Williams 1974).  This implies that the number of neutrons in the assembly at 

current times has relation to previous times only in the sense that it determines the current 

number of neutrons, but the behavior of the neutrons at future times is independent of the 

past.  It is assumed that the changes in an assembly are sufficiently small such that in a 

time increment on the order of tΔ , the changes in the system are on the order of tΔ .  
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Neutronic behavior in a pulse type assembly under weak source conditions is initially 

completely random.  It is sometimes difficult to distinguish the difference between 

deterministic and stochastic conditions.  A decent metric for assessing divergence is to 

use the lowest steady state power level that can be achieved for the reactor.  A steady 

state power can only be achieved through the use of a deterministic population.  It is 

estimated that SPR-III could be operated at a power level of ~1 mW.  Using the 

appropriate unit conversions, this equates to about 75 million neutrons/sec.  Assuming 

one initial source neutron, it would require ~18 e-foldings (e18) to reach 75 million.  With 

reactor periods on the order of ~30 μs, the deterministic buildup could be reached in ~ 

0.54 ms.  Clearly this buildup could occur rapidly. 

 

Some efforts to describe a stochastic process are warranted given their application in this 

work.  Following the notation and discussion of Bartlett, such processes may be viewed 

as a random sequence in which some variable  at a given time  is independent of the 

previous entire set of 

nX nt

X ’s (Bartlett 1978).  The random walk of the variable may be 

viewed as the cumulative sum of the variable X  at different times.  For relation to a 

Markov process it is assumed that the values of  at any set of times  ( ) 

depend on the values  at any set of previous times  (

nX nt

j−

Nn K,2,1=

mX mt m −= ,,1,0 K ) through the 

last value of .  Thus the distribution at times  0X nt ( )ntKtt << 21  is related through: 
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)

)

The notation of  denotes the conditional probability of observing event  

given event .  Thus the Markov process is then defined by the conditional probability 

distribution  for any  combined with the initial distribution 

. 

( 1122 ,|, txtxp

( 11 ,|, −− nnnn txtx

2x

1x

p n

( )11 , txp

 

3.2 Point Model Derivation 

3.2.1 Forward Equation 

 

In this section, a derivation of the 0-D equation for the probability of exactly  neutrons 

being present in an assembly at time , or 

N

t ( )tPN .  Direct solution of this probability 

equation will give complete knowledge of the number of neutrons present in an assembly 

at any time t , from which the extinction ( )( )tP0  or the non-extinction probability 

can be investigated.  Moreover, statistical moments such as the mean and 

variance of the neutron population can be readily obtained and evaluated. 

( )( tP01− )

 

The equations and derivations below have been initially reported elsewhere.  This work 

includes a summary of important features for consistency.  For the full derivation of these 

equations see the works of Courant (1947), Feynman (1946), Bell (1963), Bell (1965), 

and Williams (1974). 
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The following definitions and assumptions are made: 

 

 

)Let  be the probability that  neutrons exist in some system at time  given 

one neutron was injected at time .  It is assumed that 

( 0| ttPN N t

0t tΔ  is large enough such that one 

neutron can be emitted during the time interval but small enough to make sure the events 

are mutually exclusive. 

 

 Following the notation of Williams (1974), let: 

 
FF v Σ⋅

=
11

λ
 = mean lifetime for a fission neutron.  Also, let the probability that 

j neutrons are released per fission be  for jp 71 ≤≤ j .  This represents a net increase in 

neutron population. 

 
CC v Σ⋅

=
11

λ
 = mean lifetime for a capture neutron.  This represents a net decrease 

in neutron population. 

  = external random source strength/time interval, assumed to emit one neutron S

 in the time interval; however, other sources may be used. 
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A balance equation can be setup for ( )0| ttPN  by accounting for all independent and 

mutually exclusive processes that can occur within a short interval of time , noting the 

Markovian character of the statistical processes of interest.  By enumerating all possible 

events that may happen during the time interval 

tΔ

tΔ : 

 ( ) +Δ⋅⋅+⋅+Δ⋅⋅=Δ+ +− tNttPtSttPtttP CNNN λ1)|()|()|( 01010  (3) 
 a b c 

( )[ ] ( )totNtSttPtpjNttP FCN
j

FjjN Δ+Δ+⋅−Δ⋅−⋅+Δ⋅⋅⋅−+⋅∑ −+ λλλ 1)|()1()|( 001  

 d e 
 
where: 

 

a. Probability that there are N  neutrons at time tt Δ+  given one neutron was 

injected at time 0t . 

b. Probability that there are 1−N  neutrons at time t  and the source emits one 

neutron within tΔ . 

c. Probability that there are 1+N  neutrons at time t  and one is captured within tΔ . 

d. Probability that there are ( )jN −+1  neutrons in the system and that any of those 

neutrons causes a fission yielding up to j  neutrons ( )Jj K,1,0=  within tΔ . 

e. Probability that there are N  neutrons at time t  and nothing happens within tΔ . 

 

Dropping the conditional probability notation, combining terms and rearranging: 

 
[ ] ( )

( ) )()1()()(

)(1)()(
)()(

1

11
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t
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j
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Taking the limit as  and recognizing the definition of a derivative on the left hand 

yields: 

0→Δt

 
[ ] ( ) ( )

∑ ⋅−+⋅⋅

+⋅+⋅−⋅+⋅+−⋅=

−+

+−

j
jjNF

NFCNCNN
N

pjNtP

tPNtPNtPtPS
dt

tdP

)1()(

)()(1)()(
)(

1

11

λ

λλλ
 (5) 

 

Assuming there is one neutron initially in the system, a suitable initial condition may be 

expressed as 1,0 )( NN tP δ=  where δ  is the Kronecker delta function.  Equation 5 is the 

differential form of the Chapmann-Kolmogorov equation and represents an infinite 

hierarchy of differential equations for the desired neutron number probability.  As such, it 

is not amenable to solution in this form.  Although truncation of the hierarchy may be 

considered, interesting values of  are typically in excess of 106 so direct solution is 

impractical.  Even for small values of , it is seen that the solution at the value of  is 

dependent on other terms (from the 

N

N

N

N

j−+1  terms in the summation).  However, an 

alternative formulation based on a probability generating function (pgf) is more suitable 

for analysis.  The differential-difference equation above may be dealt with through the 

use of a probability generating function. 
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The probability generating function associated with a discrete-state continuous time 

probability distribution function (pdf) is defined by: 

  (6) ∑
∞

=

⋅=
0

)(),(
N

N
N tPxtxG

with 1<x  such that .  Each term in the 

generating function describes the probability of either zero, one, two, etc. neutrons as a 

function of time.  Using a generating function removes information of the exact numbers 

of neutrons present in the system and transforms them into a new variable G .  Another 

generating,  is also needed for the fission multiplicity where . 

K+⋅+⋅+= )()()(),( 2
2

10 tPxtPxtPtxG

( )xg ( ) ⋅=
N

n
n pxg ∑

∞

=0

x

 

The hierarchical equations for the pdf may be transformed to a single partial differential 

equation for the pgf as follows.  First note some properties: 

 ∑
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All terms in Eq. 5, are then multiplied by  and summed over all  to obtain: Nx N
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Using the generating function and the derivative properties defined above in Eqs. 7-9, the 

equation reduces to: 

 ( ) ( ) ( )( )[ ]
x
GxxgxGSx

t
G

FC ∂
∂

−⋅+−⋅+⋅⋅−=
∂
∂ λλ 11  (11) 

 

Subject to initial condition: 

 xxG =)0,(  (12) 

 

Eq. 11 is a partial differential equation for the generating function which embodies the 

same information as the complete probability distribution but now has a more appealing 

form for analysis.  While its solution under general conditions cannot be explicitly 

obtained, closed form solutions can be obtained for special cases from which the 

probability distribution can then be constructed by expanding the pgf in powers of x .  

Alternatively, equations for the moments can also be directly obtained; however, these 

are not of particular interest here. 

 

Eq. 11 can be recast into an alternate form that makes it more useful for further analysis.  

In particular the second and third terms on the right hand side may be combined into a 

more concise format.  Following the notation of Bell (1963), let 

 where the  terms represent 

the probability of fission times 

( ) ( ) ( )( ) ∑
=

⋅+−=−⋅+−⋅=
J

j
j

j
FC tcxxxxgxtxf

0
1, λλ ( ) ( )tc j

j  neutrons being emitted per fission. 
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The generating function equation simplifies to: 

 ( ) ( )
x
GtxfGxS

t
G

∂
∂
⋅+⋅−⋅=

∂
∂ ,1  (13) 

 

Additional discussion on the physics terms which embody the ( )tc j  terms is warranted.  

Following Bell, it is first noted that  may be expanded into jx

( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) j
j

jj xxjxjxx −⋅
⋅−−

+−−
−

+−⋅−=−−= 111111111 2 K
K

j
jj ⋅⋅

!
j⋅
!2

.  

This expansion is then developed further such that in ( )txg ,  the term in the summation 

becomes, ( ) ( ( )) ( )
iif

J

j

tktpijjj χ
ν

χ ⋅=⋅=⋅+−−⋅∑
=

)(11
1

L j tc  where the iχ  terms are 

constants from the fission multiplicity (see Table 3 to follow). 

 

Using these relations, the formulation for ( )txg ,  simplifies to 

( ) ( ) [ ] ( ) ( ) j
J

j

jj x
j

tktkxtxg −⋅⋅−⋅+−⋅−= ∑
=

1
!

1)()(11,
2

χ

ν
 where the terms 

!j
jχ

 represent the 

fission neutron multiplication ( 2=j  neutron pairs, 3=j  neutron triplets, etc).  Bell 

notes that if  is set to zero, then for stationary time independent systems the steady 

state (SS) non-extinction probability or POI is in fact the root of the equation.  Bell 

makes use of a quadratic truncation which appears to be valid over regimes where 

 (Bell 1963).  The quadratic truncation takes the summation in the above 

formula to be limited to the second term 

( )txg ,

10.01<−k

( )2=j , which assumes that 2=v .  It is 

common to truncate the fission generating function at the second term as it allows 

 
 

- 29 - 



www.manaraa.com

 

development of analytical solutions under limiting conditions.  This is equivalent to the 

historical “birth and death model” as outlined in Williams 1974.  Truncation at the 

second order fission term is partially justified by the fact that the first and second 

moments (mean and variance) of the neutron distributions are correctly obtained (Lewins 

1978).  The validity of the quadratic approximation versus using the full fission 

distribution will be covered in detail in subsequent sections. 

 

3.3 Fission Multiplicity Constants 

 

For reference the fission multiplicity constants used in this work are taken from the 

modified Frehaut (1988) distribution in Nolen (2000).  The non-linear fission multiplicity 

constants, iχ , are provided below in tabular format.  For these constants, Bell and 

Méchitoua present two different equations.  The equations are identical, merely recast to 

explicitly include ν  where Bell’s notation pulls it out of the summation term (Bell 1965, 

Méchitoua 2000). 
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For simplicity the following definition was used to calculate the fission multiplicity 

constants: 

 ( ) ( ) ( )∑
=

⋅+−−⋅⋅
−

=
i

j
j

i

i pijjj
i 2

11
!
1

Kχ  (14) 

 

where  is the probability of jp j  neutrons emerging from fission. 

 

Table 3: Fission multiplicity constants. 
i  if  iχ  
2 0.3246 4.793 
3 0.2990 7.512 
4 0.1270 9.204 
5 0.0330 8.856 
6 0.0047 6.408 
7 0.0006 3.024 

 

3.4 Solutions for PN(t) Invoking the Quadratic Approximation 

 

By limiting the non-linear terms to the quadratic truncation, analytical solutions for the 

probability of  neutrons at time t, or N ( )tPN  can be found.  Efforts were initially focused 

on a zero source and constant source case. 
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3.4.1 Zero Source 

 

For a zero source and constant source case Bell was able to invert a Laplace transform of 

the generating function equation to provide an approximate solution for the probability of 

neutrons that is valid for large times and large neutron populations.  In particular, Bell 

assumed that the mean was represented as 

N

( )
( )

10
''

>>=
∫ ⋅
t

t
dtt

etn
α

 .  Given that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l
kp 1

α  

is typically a large number due to the small neutron lifetime, the integration forward in 

time is not too limiting to preclude the formula to be of use.  The solution for the zero 

source case assuming one initial source neutron derived by Bell is: 

 ( ) ( )[ ] ( ) ( )
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where ( ) ( )
2

0
12

χ
ν
⋅

−⋅⋅
==

k
kPOItp .  Bell’s formula for ( )tPN  is useful for large values of 

; however it does a poor job for small numbers of neutrons at early times.  It is 

worthwhile mentioning that explicit formulas for 

N

( )tPN  can be extracted without having 

to use Laplace transforms.  A construction for ( )tPN  is provided below using a series 

expansion.  For the zero source case, the derivation begins with Bell’s formula for the 

generating function (Bell 1963): 
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Representing the integral in the denominator as ( )tb  and the numerator as ( )tn , a 

binomial expansion of the above yields (Prinja – unpublished notes): 
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From the definition of the generating function, the coefficients for the  terms may 

be readily found. 

( )tPN

 ( ) ( )
( )tb

tntP
+

−=
1

10  (18) 
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⎥
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N tb
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tntP  for K,2,1=N  (19) 

 

A formula for the extinction probability ( )tP0 , as well as for any number of neutrons can 

be found at all times without any restriction on time, size of the neutron population, or the 

system multiplication factor. 

3.4.2 Probability of N neutrons 
 

For static reactivity, both  and ( )tb ( )tn  are readily found: 

 ( )
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Using Bell’s time asymptotic solution for ( )tPN  and the exact solution shown above, a 

comparison is presented in the figure below.  For this figure, the following constants were 

used: , . 0072.1=k sec10 8−=l

 

 
Figure 5: Comparison of solutions of the quadratic truncation for PN(t) for static reactivity. 

 

The figure contains curves for different fixed values of .  The solid lines in the figure 

represent the exact solutions given by the series expansion.  The dashed lines represent 

Bell’s approximation.  For small values of  and time, there is a large disagreement in 

the results.  This disagreement is due to Bell’s assumption that the value of  is large 

and sufficient time has elapsed 

N

N

N

( )( )1>>tn  from the initial injection event.  Once the 

number of neutrons is on the order of a few thousand or greater, good agreement is found 

between the two results.  In particular the time asymptotic behavior of both formulas 

agrees well. 
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The results in the figure show that at early times the probability of observing many 

neutrons was small as only one initial source neutron was present.  Larger numbers of 

neutrons begin to appear later in time as neutron multiplication takes place.  At times ~ 

10-5 the overall solution for any number of neutrons becomes vanishingly small and all 

cases follow an asymptotic shape.  The figure above can be related to the non-extinction 

probability that will be solved numerically in subsequent chapters.  If one sums over all 

numbers of neutrons, one obtains the non-extinction probability.  The extinction 

probability can be readily found by simply setting 0=N  or simply subtracting the non-

extinction probability from unity.  To highlight this behavior and the functional shape of 

the time non-extinction probability, the figure below plots both the time dependent 

extinction and non-extinction probability. 

 

 

Figure 6: Extinction and Non-extinction probability for static reactivity. 
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One can see that initially the non-extinction probability is unity at the initial condition 

and then decreases as a function of time.  The complementary extinction probability 

shows that at late times the probability the chain has become extinct is quite high, yet 

there is finite probability that the chain has become divergent which is seen by the 

asymptotic SS non-extinction probability, or POI. 

 

3.4.3 Constant Source 

 

The results presented above were for a single initial injected neutron.  In Bell’s work 

discussing the zero source case, he extended the theory to include the impact of a 

constant source (Bell 1963).  The constant source cases assume initially there were no 

neutrons in the system and then just shortly after time zero, a constant source of neutrons 

was injected.  The formula derived by Bell was: 
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⎠
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2
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η
⋅Σ
Σ⋅⋅⋅

=
⋅

=
F

AlSS  

The gamma function was substituted into Bell’s formalism to allow for source strengths 

that are less than the resulting neutron lifetime (η  can be less than one).  Note that the 

value of η  (or essentially the product of lS ⋅ ) governs the broadness of the distribution.  

The formula for the constant source case was also confirmed by Harris and compared to 

the subprompt critical experiments documented in Hanson (Harris 1961).  Harris notes 
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that the probability distribution solution satisfies a gamma distribution where η  can be 

taken to be the relative standard deviation. 

 

Following the format for the zero source case, an expression may be derived for the 

source case using a series expansion.  Revisiting Bell’s source generating function 

(1963): 
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It is assumed (as was in Bell’s work) that the function ( )00 , txG  is initially zero which 

means that initially there are zero neutrons in the system.  Representing the integral as 

, and substituting in Bell’s variable ( )tb
'

2

2χ
η S⋅
= , the equation for the generating 

function takes the form:  
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Using the definition of the generating function the values of ( )tPN  may be found from: 
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Solution of the above formula allows one to determine the probability of  neutrons at 

any time  for a fixed constant source.  It is worthwhile to note that the extinction 

probability for the source case goes to zero for large times.  Physically this means that for 

a prompt critical system with a constant source, one of the source particles will 

eventually lead to a divergent chain and thus the extinction probability must be zero. 

N

t

 

The time dependent behavior for the extinction probability can be seen by setting  to 

zero in Eq. 25.  Upon doing so the extinction probability then becomes: 

N

 

]
 ( )

( )[ ηtb
tP

+
=

1
1

0  (26) 

 

The variable  is related to ( )tb ( )tn  which continues to grow rapidly as a function of time. 

At late times  is a tremendously large number.  Even for small values of( )tb η , the term 

in the denominator continues to grow with time until eventually the extinction probability 

eventually becomes zero. 

 

3.4.4 Probability of N neutrons 
 

Expansion solutions are compared against Bell’s solution for various times, numbers of 

neutrons and source strengths.  As the plots are dependent upon multiple variables, only a 

few source strength plots are presented.  The first is that of a small source, whereas the 

second represents a strong source. 
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Figure 7: Comparison of solutions of the quadratic truncation for PN(t) for static supercritical 

reactivity with a weak source. 
 

 
Figure 8: Comparison of solutions of the quadratic truncation for PN(t) for static supercritical 

reactivity with a strong source. 
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As was shown for the zero source case, deviations are seen for early times and small 

numbers of neutrons.  The difference between the solutions was seen regardless of the 

source strength used.  For small source strengths the probabilities build up to near 

constant values for time frames of interest.  As the source strength was increased the 

probability of observing any numbers of neutrons at late times goes to zero.  This is again 

due to the fact that for a prompt critical system with a source the system must lead to a 

divergent chain.  As the source strength was increased, the time at which these curves go 

to zero becomes shorter and shorter indicating that a divergent chain has developed. 

 

To reinforce the concept that prompt critical systems with a source must lead to a 

divergent chain, the probability of finding zero neutrons as a function of time (the 

extinction probability) and the complementary event (the non-extinction probability are 

provided below) for a strong source. 
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Figure 9: Extinction and non-extinction probability for a prompt critical system with a source. 

 

With a source present in a prompt critical medium, the extinction probability must go to 

zero.  This was seen in the figure above which shows that the extinction probability 

rapidly approaches zero while the complementary non-extinction probability rapidly 

approaches unity.  As time approaches infinity, the non-extinction probability does go to 

unity and a divergent chain has developed. 
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3.5 Dynamic Reactivity Insertions 

 

The theory presented so far was generic with respect to the overall system reactivity.  The 

initial discussion was that of a static system to understand constant reactivity systems and 

then proceeds to include dynamic reactivity insertions.  As all pulse reactor systems must 

insert reflectors or fissile material, the system reactivity is typically ramped as a function 

of time.  This additional time dependence makes the non-extinction probability problems 

interesting and complex. 

 

 

) )

Much of the initial analytical work and numerical results were focused on static reactivity 

to confirm theory.  Upon good agreement with theory, the results were then extended to 

either a step or ramp insertion case where the system would be idle at some lower 

reactivity state (  and then progress to some higher reactivity state (  over a 

given time interval 

mink maxk

( )reflt .  For a step insertion, the system multiplication factor was 

assumed to instantaneously switch at the reflector insertion time. 

 

Other types of insertions beyond ramps are also feasible but were excluded from analysis.  

A simple step or ramp insertion was sufficient to capture the principle behind reactivity 

addition as a function of time. 
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3.6 Backward v. Forward 

 

Prior to proceeding further, discussion is warranted regarding the forward and backward 

equations.  The forward derivation was presented previously and both forms are useful 

for analysis.  In the discussion of Markov chains the concepts of forward and backward 

equations are routinely used.  In reactor systems forward equations are typically the most 

common and intuitive.  Namely, as one neutron is injected into the reactor, the progeny 

are followed as a function of time.  The number of neutrons at future times is initially 

dependent upon the initial condition; namely one or more neutrons at the injection time 

but at later times future states are independent of the initial condition.  In nominal reactor 

calculations, forward based problems are used to describe the time dependent change in 

neutron density as a function of time based on some initial condition. 

 

For the forward case one is interested in the probability of any change occurring during 

time t  and  in which the following relation holds tt Δ+

( ) ( ) ( ) ( )tottPtttttP Pt Δ+⋅Δ+Δ 12222 |||

2t 2t >

s

=1+ .  The time  is initial state and subsequent 

changes are examined at time  for which .  For the backward case one considers a

small change in the initial 1t  uch that 

1t

1t  

( ) ( ) ( ) ( )totttPttPtttP Δ+Δ−⋅=Δ− 111 |

1t

( )tt

2 |12 |

2t

1 tt <

.  

The time  is the final state and subsequent changes are examined at time  for which 

.  Starting from the final state, changes are examined at previous times 2 Δ−1 .  

From these two probability change relations, arguments for the forward and backward 

equations can be derived and their equivalence can be shown (Harris 1963). 
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Noting that all coefficients in the forward and backward probability equations are finite, 

it has been shown by many authors that both forms are mathematically equivalent (Feller 

1968, Lewins 1978, Salmi 1980, Harris 1983, Harris 1989).  The fundamental difference 

between the two forms is how the time parameter is treated.  In the forward derivation, 

the initial time  is held fixed, and all information about the system is known, while 

future times , such that , are treated as variable.  The backward equation considers 

the terminal time  as fixed, and all information about the system is known, while the 

previous times , such that 

0t

s

t 0tt >

s

ft

ft< , are treated as variable.  If the properties of the system 

are time independent, the solution then depends only on the total time magnitude (either 

from the initial condition or the time to the terminal condition) st −=τ  such that 

t
G

s
G

∂
∂

=
∂
∂

−  (Lewins 1981).  The major difference between the two formalisms is that the 

forward derived equation is linear whereas the backward equation is non-linear.  Such 

non-linearity in the backward form will be addressed below.  The time domain is then 

treated as the time magnitude from the initial condition or the time to the terminal 

condition, and only the time magnitude is important. 

 

Time dependent backward or adjoint calculations are formulated similarly as the forward 

equation.  Namely, the initial condition is reversed such that the system is now defined by 

a terminal condition.  Adjoint calculations are typically best understood as importance 

functions.  In particular, for a neutron injected into some medium at a given time, the 

problem solved is the importance at some later time.  The backward equations seek to 

answer the question that if a neutron is injected into a medium at some point in the past at 
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time , what is the probability it will not become extinct over the time interval of 

?.  A non-zero non-extinction probability highlights that neutrons will still be 

present at this later.  In the backwards case, one injects neutrons at the initial time while 

assuming that the chain has not become extinct at the terminal condition. 

s

st f −

 

Despite the different types of formalisms, both are used in the support of this work.  The 

solutions for  shown above and the Monte Carlo results presented in later sections 

are of the forward type.  The initial source neutron is tracked forward in time until its 

progeny die or diverge.  The non-extinction probability equation used throughout the 

remainder of this work is the backward type.  Problems arise with the forward formalism 

as closed form solutions cannot be obtained.  Only the backwards probability balance 

yields a closed form solution which can readily be solved. 

( )tPN

 

3.6.1 Backward Equation 
 

The backward equation provides an alternative but equivalent formulation of the time 

dependent neutron number probability in a zero dimensional setting.  It differs from the 

forward equation in that the probability balance is constructed by considering 

independent and mutually exclusive events that contribute to a fixed final state and time 

following an infinitesimal change in the injection time of an initiating neutron.  Since the 

initial time becomes the independent variable while the final time is fixed, the equation is 

accordingly referred to as a backward in time equation.  As we will see, however, the 

backward equation is a nonlinear equation with respect to the appropriate probability as 
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well as the generating function, but as will also be shown, the backward formulation 

provides a natural setting when generalizing the stochastic model to accommodate phase 

space coordinates. 

 

The difference between the forward and backward cases arises from the fission neutrons 

produced.  In the forward equation the probability balance was built around any one of 

the ν−+1N  present at time t  causing a fission event and the resulting ν  neutrons 

produced (minus the parent) would then contribute to  neutrons being present at time 

.  The backward balance is similar, except the difference is that (

N

tΔt + )1−ν  neutrons 

produced by the initial neutron having a fission reaction at time ( )ss Δ+  leading, through 

their own progeny, to exactly  neutrons being present at the terminal time. N
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In order to derive the backward equation, let ( )stP fN |  be the probability of  neutrons 

being present at the terminal time , which is fixed, given that one neutron was injected 

at some variable initial time .  Consider now the same probability at a short time 

N

ft

s sΔ  

after injection of the initial neutron.  A probability balance of all independent and 

mutually exclusive events then yields: 

 ( ) +⋅Δ⋅+Δ+⋅Δ⋅−= 0,)|(1)|( NCfNTfN ssstPsstP δλλ  
 a b c (27) 

( ) ( ) ( ) ( )sosstPsstPsstPps
Nmmm

fmfmfmiF
n

k
Δ+Δ+Δ+⋅Δ+⋅⋅Δ⋅ ∑ ∑

=++ K

LL
21

21
|||λ  

 d 
 

a. Probability that N  neutrons are present at time ft  given one neutron injected at 

initial time s . 

b. Probability of no interactions occurring in time sΔ  after injection multiplied by 

the probability that the initial neutron at time ss Δ+  will lead to N neutrons at 

time ft .  

c. Probability that the initial neutron will be parasitically captured over the interval 

sΔ  and this event will only contribute to the final state only if 0=N  at ft . 

d. Probability that the initial neutron has a fission reaction over interval sΔ  times 

the probability of one, two, or multiple neutron emissions with probability ip , 

each of the latter creating progeny such that there are a total of N  neutrons at 

As each fission neutron develops its progeny independently, the probabilities of 

the individual chains are multiplied to yield the given final sta

ft .  

te. 
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Rearranging and taking the limit as 0→Δs , the nonlinear backward equation is 

obtained: 
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ission terms, 

 

where for each of the f NNN i =++L1 .  Eq. 28 is also subject to a 

rminal condition of: te

( ) 1,| NffN ttP δ=  (29) 

rtain advantages will accrue. Thus, multiplying all terms by 

and summing over all  yields: 

 

 

Due to the non-linearity, solution of the backward equation is considerably more 

challenging than the forward case.  However, by converting this to an equation for the 

generating function, ce Nx  
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troducing the generating function as before, namely: 

) (31) 
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Manipulating the summation terms, Eq. 30 eventually yields the following: 
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bject to a terminal condition of: 

 

su

( ) xttxG ff =|,  (33) 

 

xSetting  to zero in the generating function yields: 
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where ( )stP f |0  is just the extinction probability. Similarly setting 0=x  in Eq. 32 w

that the gene

e see 

rating function equation is equivalently an equation for the extinction 

: probability
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It is noted that it is not possible to write down a closed form equation for the extinction 

probability in the forward formulation but although this becomes possible in the 

backward approach, it comes at the price of nonlinearity.  Of greater interest in this work 

is the non-extinction probability which is given by the complementary event 

( ) ( )stPstP ffNE |1| 0−= .  Expressing the non-extinction probability as ( )stp f | , Eq.(35) 

becomes: 
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The fission term can be simplified by applying a binomial expansion: 

  (37) ( )( ) ( ) ( )∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−=−

i

k

i
f

ii
f stp

k
i

stp
0

|1|1

 

to eventually obtain the non-linear backward time dependent non-extinction probability 

equation: 
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where the iχ  constants are the same as defined earlier and take into account the fission 

multiplicity data. 
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CHAPTER 4: NUMERICAL MODELING – 0-D 

 

The modeling efforts of this section were geared towards numerical solution of the 

deterministic non-extinction probability equation.  Solutions to this equation lead to an 

understanding of the time dependent behavior in prompt critical systems.  Numerical 

results are presented for a wide variety of cases.  These include static, step, and ramp 

insertions of reactivities as well as inclusion of an external source.  Parameters applicable 

to SPR operation are also used and varied to understand the sensitivity of these terms on 

the non-extinction probability (see Appendix A for more details).  The 0-D case for the 

monoenergetic non-extinction probability is presented below.  The backward time 

dependent non-extinction probability 0-D equation is: 

 ( ) ( )∑
=

⋅⋅−⋅Σ−⋅Σ⋅+Σ=⋅Σ+⋅−
7

2 !
11

i

iii
FFCA p

i
pvp

dt
dp

v
χ

 (39) 

 

with  

 0.1)( =ftp  (40) 
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This equation can be recast into an alternate form that makes it useful for interpretation of 

the infinite eigenvalue by recognizing that 
Av

l
Σ⋅

≡
1 , using a shifted time index 

, and inserting: tttt f =−=*

 

 [ ] ( )∑
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⋅⋅−⋅
Σ
Σ

−⋅−=⋅
7

2 !
11

i

iii

A

F p
i

pk
dt
dpl

χ
 (41) 

 

with  

 0.1)0( =p  (42) 

 

and also noting that 
A

Fk
Σ
Σ⋅

=
ν

. 

 

4.1 Examination of Non-Linear Terms 

 

The non-linear terms in the non-extinction probability are what makes the equation 

unique relative to the neutron transport equation.  Prior to solving the non-extinction 

probability equation, an investigation into the behavior of these non-linear terms is 

warranted.  The general form of the linear and non-linear fission terms takes the 

following form: 

 ( ) ( ) ( )∑
=

⋅⋅−⋅Σ−⋅Σ⋅=−
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2 !
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i

iii
FFFF tp

i
tpLNL

χ
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It is advantageous to spend some time understanding the nature of .  As noted by 

Bell (1963), the entire summation of the non-linear terms is always positive.  With the 

negative sign in front of the summation, the non-linear terms always have a time 

absorptive effect. 

][LN F

 

The non-linear terms represent the mean number of neutron groupings emitted per fission 

(pairs, triplets, etc.).  The quadratic truncation frequently used cuts off the fission 

multiplicity at 2.  To help the reader better understand how these truncations impact the 

overall fission term, several simple graphs are included for illustration. 

 

Using a fission cross-section of 0.04164 cm-1, the non-linear terms versus p  are plotted 

in the figure below for each of the non-linear terms by themselves.  Thus the  term is 

only for the quadratic term, the  term is only for the cubic term, and so on. 

2p

3p
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Figure 10: Magnitude of the non-linear terms versus non-extinction probability. 

 

The figure illustrates the magnitude of each of the non-linear terms.  The negative sign 

outside the summation is included such that each of the even powered terms is negative.  

Only the odd powered terms show some positive behavior, with the cubic term showing 

the largest positivity.  For powers of fifth order or higher, the overall magnitude of terms 

is sufficiently small due to the high power in p and also the inverse factorial term.  The 

entire non-extinction probability domain is necessary to plot as the terminal condition 

fixes the probability to one.  It will be shown later that the systems of interest in this work 

have small POI values.  One must then integrate in time until the POI value is reached; 

thus the non-extinction probability domain shown above is traversed. 

 

 
 

- 54 - 



www.manaraa.com

 

To highlight the difference of the non-linear terms in the summation, the figure below is 

provided.  The linear term is shown and then subsequently adds on the non-linear terms 

one by one.  This process proceeds through the full multiplicity.  Consequently, the 

overall importance of the non-linear terms can be seen in aggregate as well as the 

importance of the truncation of non-linear terms retained. 

 

The notation in the figure below is according to the following.  The solid red curve “LF” 

represents the linear fission term.  The dashed blue curve “LF-[p3]” represents linear 

minus the sum of the quadratic and the cubic term and so on. 

 

 

Figure 11: Overall importance of the non-linear terms on the fission term. 
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It is interesting to note that the quadratic curve exhibits significant curvature and almost 

drives the fission terms to zero near the probability of one.  The higher order fission 

terms exhibit oscillatory behavior due to the (-1)i term in the summation.  The quadratic 

and cubic terms underestimate and overestimate the fission importance, respectively.  As 

noted earlier, for terms five or higher there is a negligible change in the combined fission 

term.  Regardless of the summation truncation used, the non-linear terms do indeed have 

an absorptive effect on the fission term. 

 

Several conclusions can be drawn from the figures presented above.  The non-linear 

terms act as a time absorber in the system.  For any fission truncation used, the effective 

system reactivity with these terms is lower than in the standard eigenvalue calculation.  It 

is noted that the quadratic truncation differs significantly from the full multiplicity.  Thus 

it can be expected that the time dependent results for the quadratic case will slightly 

underestimate the non-extinction probability compared to the full multiplicity while the 

system is relaxing to the POI. 

 

4.2 0-D Iteration Routine 

 

Solutions were sought for the time dependent non-extinction probability.  Two methods 

were sought for solution, one in which the roots of the above equation were solved 

explicitly and the other method used a Newton iteration routine.  With the Newton 

routine, the solution within a timestep is iterated upon until convergence is achieved.  It 

was found that this method was significantly faster than the polynomial solver.  This was 
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not surprising as much time is spent calculating all the roots.  It should be noted that 

 is a root and there is always one root which is positive and is bounded between 

zero and one.  The Newton routine proved to be sufficiently fast that resolution of the 

time domain was readily seen.  Across the time domain the number of Newton iterations 

per timestep was on the order of 3-5.  The breakdown of the Newton routine used is 

provided below.  The routine uses a fully implicit time discretization. 

0=x

 

Let n  denote the solution at the current timestep and n+1 the solution at the next 

timestep.  When , this corresponds to 0=n 0tt = .  Recasting the non-extinction 

probability equation: 
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Rearranging 
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Let: 
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Performing a Taylor’s series expansion on h, and neglecting the derivative terms of 

second order and higher: 

 ( ) ( ) 0' =⋅Δ+ phpph  (48) 
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Within a timestep, the variable k is used to denote the Newton iteration index. 
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The Newton iteration is performed until the successive difference between iteration steps 

is within the desired error criteria. 

 

4.3 Zero Source - Static Reactivity 

 

Using the Newton iteration routine outlined above, the time dependent non-extinction 

equation is initially solved for the full fission multiplicity data.  The case for static 

reactivity is presented below.  The systems are taken to be at a fixed multiplication factor 

for all times.  The time dependent solution is plotted for several multiplication factors to 

highlight the subsequent difference on the time dependent behavior. 
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Figure 12: Time dependent non-extinction probability for fixed reactivity. 

 

The time dependent solutions initially exhibit similar behavior for early times.  For high 

system reactivities, the steady state POI is reached rapidly.  As the multiplication factor is 

decreased, the time to reach the steady state solution increases and the resulting 

magnitude of the solution decreases.  Note that the time scales at which the steady state 

values are reached are significantly different (results presented on a log-log scale).  Thus 

there is a significant time lag for weakly prompt critical systems before the steady state 

solution is reached.  For a system exactly critical, the non-extinction probability tends to 

zero for infinite times.  This result is non-obvious as the ratio of production to losses is 

unity and one would expect the solution to tend to a constant.  The subcritical cases also 

tend to zero, yet at a much faster rate as expected. 
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One can see that eventually the asymptotic SS POI value is reached for all prompt critical 

systems.  Thus a neutron injected over this time interval will either become divergent or 

extinct.  The SS POI represents the fraction of such divergent chains.  For low prompt 

critical systems, the resulting POI value is low.  As the system reactivity is increased the 

POI approaches values close to one.  For times close to the initial condition the non-

extinction probability is near unity.  Given the time magnitude from the initial condition 

is small, sufficient time has not elapsed for a divergent chain to develop.  One can see in 

the figure that there is significant multiplication for the high multiplication factor cases 

such that the non-extinction probability asymptotes rapidly.  Even for the subcritical case 

shown in the figure, a significant period of time must elapse before the chain can be said 

to become fully extinct.  Thus the greater the chance for the source neutron to multiply, 

the greater the chance it will exist at later times from the injection time. 

 

4.3.1 Timestep Analysis 

 

As with any numerical integration routine, the timestep selected can play a large role on 

the overall results.  This is particularly true as the differencing scheme used for the 

Newton routine is .  Given the non-linearity of the problem, the timestep of the 

solution was thoroughly studied.  In particular, in order to obtain the exact description for 

the time dependent behavior, one must choose a sufficiently small timestep.  For Figure 

12

( )to Δ

, a timestep of 0.1 ns was used for an effective neutron lifetime of 10 ns.  As the 
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simulation timestep is increased, a deviation in the time dependent behavior is seen.  The 

figure below illustrates these behaviors. 

 

 
Figure 13: Importance of timestep on time dependent solution. 

 

For timesteps less than the assumed neutron lifetime (10ns), the timestep is sufficiently 

small that there is negligible change in the time dependent solution.  Thus if one is 

interested in the time dependent behavior, timesteps smaller than the neutron lifetime 

should be used.  It is interesting to note that even though large timesteps lead to large 

deviations in the initial time dependent solutions, these cases always converge to the 

exact same steady state non-extinction probability.  The utility of this point is such that if 

only the steady state value is sought, large timesteps may be used.  The initial time 
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dependent behavior will not be correct; however, the steady state value will be reached.  

In order to obtain a benchmark on the time dependent behavior, solution of the 

differential equation is necessary.  Comparison of the analytic to the numerical solution is 

discussed in the next section. 

 

4.3.2 Analytical v Numerical Solution 

 

To ensure the numerical results obtained from the Newton routine were correct, a 

comparison can be made against an exact analytical solution.  To develop the analytical 

solution, the quadratic truncation must be invoked.  The quadratic analytical solution for 

constant reactivity is presented below.  The backward equation with the quadratic non-

linear truncation is: 

 ( ) 22

2
1 ppp
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v FFST ⋅⋅Σ−⋅Σ⋅+Σ=⋅Σ+⋅−
χ

ν  (51) 

with  and ftt ≤<∞− ( ) 0.1=ftp  

 

With some re-organization: 
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Eq. 52 is then divided by  and is shown to satisfy a Ricotti equation: 2p
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Let  such that ( ) ( )tptr /1=
dt
dp

pdt
dr

⋅−= 2

1  and substituting 

 ( )
2

1 2χ⋅Σ⋅−⋅−⋅Σ⋅= FA vrkv
dt
dr  (54) 

with 

 ( ) ( ) 0.1/1 == ff tptr  (55) 

 

The solution of which is: 
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The solution for  is then: ( )tp
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The time dependent non-extinction probability can be plotted graphically for all times.  It 

can be shown that the solution tends to the steady state POI value as predicted by Bell. 
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Using a constant system multiplication factor of 1.0072, the analytical solution is plotted 

against numerical results.  The figure below includes the analytic time dependent solution 

(using the shifted time index) and both the quadratic and full multiplicity numerical 

solutions for illustration.  A timestep of 1 ns was used. 

 

 
Figure 14: Comparison of analytical and numerical results. 

 

For both multiplicities presented, the numerical solution matches well with the analytical 

solution.  The full seven term multiplicity shows a slight difference in the solution around 

injection times a few lifetimes from the initial time.  After this both of the multiplicities 

approach the steady state solution with excellent agreement over the entire time domain. 
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It was noted by Bell that the quadratic truncation is a good approximation to the entire 

fission multiplicity data for low prompt reactivities.  To quantify the magnitude of the 

approximation and resulting limit of the quadratic truncation, the roots of the 0-D 

equation were solved for all truncations for the SS POI. 

 

 
Figure 15: Steady state POI solution versus system reactivity. 

 

 

For the broad range of system eigenvalues, there is a substantial difference seen in the SS 

POI.  For the effective range of interest for this work, 1≅effk , there is negligible 

difference between the quadratic and seventh order SS solution (confirming the results 

seen in Figure 14).  Only for multiplications above 1.2 is there a noticeable difference.  It 

should also be noted that even as the infinite eigenvalue approaches ν , the SS POI does 
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not go to one.  Thus if such a system could exist, the results show that there is no 

guarantee that a given single source neutron will lead to a divergent chain. 

 

For comparison, the SS POI for selected cases using the full multiplicity are shown in the 

table below.  In addition, the SS POI for the probability of developing a divergent chain 

(using the quadratic truncation) is also presented for comparison (Bell 1963). 

 
Table 4: Comparison of numerical POI to infinite medium values. 

k SS POI Bell’s p(t0) 
1.0001 0.000101 0.000101 
1.001 0.001009 0.001009 
1.01 0.010050 0.009997 
1.1 0.096522 0.091793 
1.25 0.227099 0.201944 
1.5 0.416543 0.336574 
1.75 0.580968 0.432738 
2.0 0.727839 0.504861 

 

For low prompt reactivities, the numerical solution is identical to Bell’s analytical 

formula.  Once the system multiplication factor exceeds ~1.1, deviations in the steady 

state POI can be found.  If one is only interested in the SS POI, Bell’s formula is 

sufficient for all reactivity ranges of interest to fast burst operation. 

 

For multiplication factors close to one, the resulting time to SS becomes increasingly 

long.  This can be problematic for the systems of interest in this work as one must 

integrate out to exceedingly long times to reach the SS value.  For the weak prompt 

critical case of  shown in the figure above, the resulting time to SS was 0.0233 

seconds.  For a timestep of 1.0 ns, this equates to a total 23,300,000 timesteps needed to 

reach SS. 

0001.1=k
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4.4 Zero Source - Dynamic Reactivity 

 

Although the results presented above for static systems yield insight into the time 

dependent non-extinction probabilities, FBRs rely on dynamic reactivity insertions for 

pulse operations.  Focus is extended to a dynamic reactivity insertion.  For systems like 

SPR, the reactivity insertion can be modeled as a ramp insertion.  For comparison to the 

numerical results, an exact analytical solution was found for a step insertion case. 

 

4.4.1 Analytical v Numerical Solution 

 

For the dynamic multiplication case, the system is taken to be at some minimal 

eigenvalue for times near the terminal condition.  At a time of , (reflector insertion 

time) the effective multiplication factor is instantaneously increased to some maximum 

value for all previous times.  Using this reactivity scheme, the following analytical 

solution is obtained. 

reflt
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where  and ( )1max −⋅Σ⋅= kvA A ( )1min −⋅Σ⋅= kvB A  
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for ,  frefl ttt << ( ) minktk =

 
( )

( ) ( )1212
1

1)(

min

2

min

2

−⋅Σ⋅
⋅Σ

+⎥
⎦

⎤
⎢
⎣

⎡
−⋅Σ⋅

⋅Σ
−⋅

=
−⋅−

kk
e

tp

A

F

A

FttB f χχ
 (60) 

 

Using the Newton iteration routine, the time dependent solution is plotted in the figure 

below.  For the dynamic reactivity case, the following values were used: 

810−=l  sec , , 0001.1min =k 0072.1max =k ,  sec,  sec.  In 

addition, two cases are also presented for the fixed multiplication factors (kmin and kmax). 

1010−−=ft 510−−=reflt

 

 

Figure 16: Time dependent non-extinction probability for a step insertion. 
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The analytical solution is plotted with red dots.  The numerical solution is plotted with a 

solid green line.  The solutions are identical over the entire time domain.  For times far 

from the initial time, the solution reaches the steady state value corresponding to the 

maximum reactivity state.  For the region of the time domain where the multiplication 

factor is changing, the time dependent solution has a sharp bend with the minimum 

corresponding to the minimal multiplication factor.  Thus for a neutron inserted just prior 

to the point at which the reactivity was increased, the non-extinction probability is at its 

lowest value and then increases to the terminal condition.  Once the reactivity state is 

changed, there is a finite period of time where the solution is between the curves for the 

maximum and minimum non-extinction probabilities.  These times may be considered to 

be in a transitionary state until the system reaches the final multiplication factor and the 

resulting solution relaxes to the SS POI at that corresponding multiplication factor.  Thus 

at times prior to the point at which the reactivity is switched the solution decays 

according to the lower multiplication factor solution and then jumps to the final state.  

From the results presented in the figure, it was concluded that excellent agreement was 

seen between the numerical and analytical results. 
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4.4.2 Dynamic Reactivity Results 

 

The time dependent solutions for varying reactivity states forces the non-extinction 

probability to see deep “dips” in magnitude while the system is subcritical.  Once the 

system crosses critical, the solution is forced to bend around.  The final system 

multiplication factor drives the time behavior relative to the terminal condition.  Using a 

ramp insertion and the same numerical timestep, the time at which all of the reactivity 

was inserted was varied for illustration.  Due to the initial subcritical nature of the 

problem, the time the system spends in a subcritical state plays a large role on the time 

dependent behavior.  The importance of the insertion time is shown in the figure below 

where the initial multiplication factor 99987.0=k  was used, the final multiplication 

factor was fixed to , and the time over which the reactivity was inserted was 

varied. 

01.1=k
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Figure 17: Non-extinction probability for a ramp insertion v different insertion times. 

 

As the reactivity insertion time is decreased, there are significant dips seen in the time 

dependent non-extinction probabilities.  This is due to the amount of time the system sits 

at a subcritical state.  For any of the cases, once critical is crossed each of the curves turns 

around.  After sufficient times from the injection time, each of the cases yields the same 

POI.  For cases where the reactivity was inserted quickly (10-6 s), there is little change 

seen in the time dependent results.  As the insertion time is slowed down, the non-

extinction probability endures a steep decline for times away from the steady state or 

initial value. 
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4.5 Source Extension 

 

It is worthwhile to note that if the time dependent behavior of a single neutron can be 

calculated, incorporation of many such particles is rather straightforward.  It was noted 

by Bell that if a source of neutrons is incorporated into the model, the resulting 

generating function is merely a product of all of the individual generating functions due 

to the Markovian nature of the low neutron number systems (Bell 1965).  It was shown 

by both Bartlett and Humbert that if the generating function for a single neutron can be 

found then the resulting generating with the source can be found from (Barlett 1978, 

Humbert 2003): 
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Relating back to the quantity of interest, the non-extinction probability with a source is 

( )( )
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−
xfSOURCE ttxG

iq i

.  In the case of a spontaneous fission source, one must account 

for the probability, , of  neutrons emitted from the fission event. 

 

Inclusion of a source in the problem can be performed using the solution of the single 

neutron non-extinction probability and the following relation: 
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In the case of a constant source where 1=I , the source non-extinction probability 

equation becomes: 
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Once the user has found the single neutron extinction probability the source non-

extinction probability is simply found through quadrature.  If the source is independent of 

time (and space), the source is pulled out of the integral and the user must merely 

integrate the resulting non-extinction probability over the interval of interest.  To do this 

numerically, one must use small timesteps to properly account for the time integral. 

 

Some interesting properties of the above equation can be deduced.  Principally, regardless 

of the source strength the resulting source non-extinction probability will approach one.  

The counter argument may also be made if the time domain is integrated over a long 

enough time interval, the resulting quadrature on the non-extinction probability becomes 

sufficiently large regardless of the source strength. 
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4.6 Source Strength Examination 

 

Discussion of neutron sources was provided earlier relative to reactor operations.  

Unfortunately there is some uncertainty in the overall source strength during pulse 

operations.  It is generally assumed that the initial neutron level corresponds to that of 

spontaneous fission for the quantity of uranium present.  This neutron level, on the 

average, will always be present.  For SPR with the safety block lower relative to the 

upper half, the system is believed to be shutdown by ~ -$15.  At this reactivity, there is a 

subcritical multiplication factor of 11.3.  Given that the normal shutdown configuration 

of the reactor is with the core halves apart, the average neutron source in the shutdown 

configuration is 11.3 * 470 n/sec.  During operations the lower core half is driven 

upwards over a period of ~ 30 seconds.  Once the core half is raised, the pulse element is 

inserted in ~ 250 ms.  The potential additional source strength increase during these times 

should also be taken into account.  It is difficult to determine what the source strength 

may be during the various periods of re-configuration.  One way to estimate the source is 

that a reasonable bounds may be set on the multiplication factor for which the minimum 

would correspond to that of the shutdown multiplication of 11.3 ( 15$−=ρ ) and a 

maximum value would correspond to that of the assembled reactivity state.  With the 

safety block fully seated, the reactor is nominally anywhere from 2-11 ¢ sub-delayed 

critical (2¢ subcritical initial reactivity for a 10 ¢ pulse, 11¢ subcritical initial reactivity 

for a 1 ¢ pulse, etc.).  Taking the worst case reactivity of just 2¢ subcritical corresponds 

to a subcritical multiplication factor of 7,693.  Thus the maximum source strength could 
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be taken to be 7,693 * 470 n/sec = 3.6*106 n/sec.  Clearly there is a large range of 

potential background sources (5.3*103 – 3.6*106 n/s). 

 

Given there are timing restrictions on the source buildup, a better way to assess the 

increase in background source strengths would be to solve the point kinetics equations 

with an external source.  Solution to such a problem will provide the additional source 

increase if the population is assumed to be deterministic.  Using a point kinetics code at 

Sandia, this calculation was performed.  The system was taken to be initially subcritical 

at -$15.  The initial source strength corresponded to that of spontaneous fission with the 

subcritical multiplication factor added in.  The safety block is then inserted over a period 

of 30 seconds to determine the net increase in source.  Once the safety block is in, the 

pulse element insertion then begins. 

 

The results from the calculation are as follows.  The initial source was taken to be 5,311 

n/s (11.3 * 470 n/s).  Once the safety block was inserted in 30 seconds the resulting 

source strength increased to ~115,000 n/s (Parma 2008).  Note that this value is bounded 

by that shown above.  This should be no surprise as the time frame of interest is long 

enough that the system has had enough time to relax to its final reactivity state (this is 

only partially correct as the subcritical multiplication factor is constantly changing as 

reactivity is being added and delayed precursors are being added, thus the solution should 

always be lower than the subcritical multiplication corresponding the final assembly).  

Assessing the additional increase in the source during the pulse element insertion is 

difficult.  In a point kinetics code, one prompt critical is crossed, the system neutron 
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population increases to infinity rapidly.  Since the pulse element is inserted quickly, it 

may be assumed that the additional increase in source can be neglected.  Thus the range 

of applicable source strengths for SPR is (5.3*103 – 1.1*105 n/s). 

 

For the range of potential source strengths, the ramp insertion case for a 10¢ pulse was 

selected as it leads to the worst case operational behavior.  It has been shown previously 

that lower pulses exhibit a sharp dip in the non-extinction probability due to the system 

being subcritical for a long period of time.  As the source non-extinction probability is the 

time integral of the non-extinction probability, the resulting dip in the non-extinction 

probability leads to a negligible change in the source non-extinction probability.  Thus 

the time at which the source non-extinction probability goes to one is much longer for a 

weak pulse case than for a maximum pulse case.  The 10¢ pulse case is therefore 

bounding for the analysis of interest here. 
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Using a 10¢ pulse, the single neutron non-extinction probability was calculated.  For 

different source strengths the source non-extinction probability was calculated as a 

function of time for . sec10 2−=reflt

 

 
Figure 18: 10¢ pulse in 0-D for bounding source strengths. 

 

 

For the different source strengths shown the time to reach a source non-extinction 

probability of unity varies considerably.  The case of 5,000 n/s reached a source non-

extinction probability of 0.9999 in 0.3835 seconds.  The source case of 100,000 n/s 

reached a source non-extinction probability of 0.9999 in 0.08395 seconds.  Increasing the 

source strength by a factor of 20 reduced the time to assure non-extinction by a factor of 

4.5. 
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4.7 Pre-initiation Examination 

 

One of the interests in this work was to determine if the pre-initiation rate on SPR could 

be estimated from the theory.  A means to assess the magnitude of pre-initiation is to 

revisit one of the formulas presented in the Constant Source section.  The probability of 

finding exactly  neutrons as a function of time with a source was shown to be found 

from: 
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The means by which a pre-initiation is judged on SPR is if the power level reaches ~ 50 

W before the burst element is fully seated.  This value was chosen such that there was an 

appropriate trigger on reactor power and not on electrical noise (Ford 2008).  The 

formula above can be modified to instead of yielding the probability of exactly  

neutrons at time t  to be the probability that the number of neutrons has not exceeded  

at time .  Following the notation of Bell, the probability that the number of neutrons 

does not exceed  at time , 

N

N

t

N t ( )tQN , can be found from .  Thus by 

summing over neutron levels of interest at time t  provides the probability that a pre-

initiation has not occurred (with respect to the experimental set point).  The resulting pre-

initiation probability would simply be the complementary event. 
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Given that one is only interested in determining the probability if a pre-initiation will 

occur or not, the solution depends on evaluating the time integral (in the  term) at the 

reflector insertion time of 250 ms and then performing the summation up to 50 W.  Some 

discussion on this power level is warranted.  Performing this operation numerically is not 

feasible.  The gamma function in the numerator increases at a rapid rate for large N.  

However in the denominator the factorial term and the gamma function are larger in 

magnitude for the same .  As  gets larger and larger the ratio of these two terms 

goes to zero.  The following identity is used for further illustration: .  A 

simplification can be made to the first term in the summation by noting that for source 

strengths of interest to this work the value of 

( )tb

Γ N

N N

( )1! −=N

η  is sufficiently small.  Thus 
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!!
.  As N  becomes large and for small values of 

η , the denominator becomes vanishingly small.  For source strengths of interest to this 

work, η  is much less than one and the approximation appears to be quite valid for the 

low source strengths of interest (for S=104 n/s, η=0.0001).  Although challenging, the 

term ( )ηΓ⋅N
1  can be evaluated, even up to 50 W. 

 

For late times the term  inside and outside the summation proves be difficult to 

evaluate.  For late times where 

( )tb

( )tn  approaches infinity, the only parameter that varies 

with respect to  is the first term in the summation.  The term N ( )tb  outside the 

summation acts as a scaling factor and for late times (where ( )tn  blows up) may be 
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approximated as: te
POI

⋅⋅−
−

⋅⎟
⎠
⎞

⎜
⎝
⎛ ηα

η1 .  This shows that the summation must tend to zero for 

late times indicating that a divergent chain will have built up. 

 

Even with all of these approximations, the expression for ( )tQN  is difficult to evaluate.  

Evaluating the summation is important as it allows one to relate the source non-extinction 

probability to a pre-initiation rate.  The non-extinction probability has no knowledge of 

the numbers of neutrons in the system, only that some exist.  It should however be no 

surprise that at late times the system would only consist of large neutron populations.  If 

the expression for  could be evaluated this could be readily seen.  Another way to 

view this is to examine the source non-extinction probability presented in Figure 18

( )tQN

.  For 

late times of interest and for source strengths  104 n/s, the source non-extinction 

probability is nearly unity which indicates that a divergent chain has almost assuredly 

been obtained. 

≥

 

Even though the source non-extinction probability and the burst probability, or pre-

initiation probability, measure different physical quantities at different times, it can be 

readily shown that with sources present only large populations of neutrons exist at late 

times and the two approximate one another.  Thus the importance of small numbers of 

neutrons is small and equating the two appears valid for the time frames of interest. 
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4.8 Maximum Over-pulse Examination 

 

One of the initial primary drivers behind this work was to determine if it was possible to 

calculate the maximum over-pulse that can be achieved on a SPR type of machine.  Per 

the SPR Documented Safety Analysis (DSA), the maximum over-pulse assumed for SPR 

is $0.40 above prompt (Ford 2005).  A pulse in this range equates to ~132 MJ of energy 

being deposited locally in the fuel.  For such energy depositions, some 86% of the core 

becomes molten with < 1% being vaporized.  In addition, experiments located in the 

central cavity may also be subject to the same fate.  Investigating the maximum over-

pulse can be performed with the theory developed in this work as well as the results 

presented previously.  To begin the analysis, multiple dynamic reactivity non-extinction 

probability runs were performed for different pulse sizes with a fixed .  Pulses in the 

upper end of the normal range were chosen as well as those that are significantly outside 

authorized operations.  The single neutron non-extinction probabilities were calculated 

and then a constant external source was also included.  The figure below shows the time 

integrated source non-extinction probabilities for a source strength of 5,000 n/s for 

various pulse sizes. 

kΔ

 

The maximum over-pulse can be determined by fixing the reflector insertion time, source 

strength, as well as the total amount of reactivity ( )kΔ  inserted.  These parameters for 

SPR are assumed fixed at 250 ms, 4,700 n/s, and $1.12 respectively.  Given that the 

maximum amount of reactivity is fixed (via the reflector worth), an over-pulse occurs if 

the initial system multiplication factor is set too high.  During a maximum pulse of 10¢, 
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the initial system reactivity is -2¢.  If the initial multiplication factor is set too high, the 

system is actually configured into a supercritical state.  The source non-extinction 

probability plotted versus time is shown in the figure below. 

 

 
Figure 19: Source non-extinction probabilities for various pulses. 

 

A number of different pulse values are shown in the figure above.  The 8¢ and 10¢ 

exhibit similar behavior as seen in earlier figures where the source non-extinction 

probability becomes flat for a portion of the time domain.  As the pulse size increases the 

time for the source non-extinction probability to go to one becomes shorter.  There is a 

transition beyond 10¢ due to the fact the reflector is assumed to be worth $1.12.  Thus all 
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cases beyond 12¢ require the system to be initially supercritical thus yielding the 

different functional shapes. 

 

The time domain in the above figure was unlimited.  If however the time integral on the 

source non-extinction probability is limited to the reflector insertion time, one can 

calculate the probability that the source has not become extinct at this time.  The table 

below provides the source non-extinction at the reflector insertion time of 0.250 seconds. 

 

Table 5: Source non-extinction probability at the reflector insertion time of 0.250 seconds. 
Pulse Size (¢) Source Non-extinction 

Probability 
8 0.9854 
10 0.9878 
15 0.9919 
20 0.9946 
25 0.9964 
30 0.9976 
35 0.9984 
40 0.9989 
45 0.9993 
50 0.9995 

 

Significantly increasing the pulse size does not have a significant impact on the source 

non-extinction probability.  Thus with the low source strength presented in Figure 19, 

there is essentially a negligible difference in the maximum over-pulse that can be 

performed.  Thus it is difficult to support the maximum over-pulse argument given the 

small difference in the source non-extinction probability at 0.250 seconds. 
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An alternate means of comparing the results is to use a value of 99.99% for the source 

non-extinction probability as the divergence metric.  For the cases presented above, the 

time at which the source non-extinction probability becomes  was recorded.  The 

plot above is then translated into a plot examining the source strength versus time instead 

of the source non-extinction probability versus time for a fixed source.  This allows one 

to determine the source strength needed (for different pulse configurations) to either 

ensure/prevent a pre-initiation occurring.  If this time to reach 0.9999 is shorter than 250 

ms, then a pre-initiation will always occur; otherwise the machine may sit at prompt 

critical for a finite period of time and perform the over-pulse. 

9999.0

 

 
Figure 20: Maximum over-pulse applicable to SPR operations. 
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The figure shows the time dependent source non-extinction probability for multiple pulse 

conditions.  Instead of fixing the source (as was done in Figure 19) the source was varied 

while fixing the source non-extinction probability.  Picking a value for assuring that a 

chain has not become extinct, one is able to determine the maximum over-pulse possible.  

For example, the figure above illustrates that to ensure a 10¢ pulse will occur prior to 

0.250 seconds, a source of ~ 10,000 n/s must be present.  When establishing the 

maximum over-pulse the goal is to ensure that a pre-initiation actually does occur prior to 

fully inserting the reflector.  Once divergence is assessed, the time at which this occurs is 

recorded.  This is then related back to the linear reactivity insertion to determine what 

final reactivity state is feasible.  An over-pulse of $1.226 (22.6¢) is sufficient to cause 

core melting.  To preclude core melting from occurring, a source of ~ 8,000 n/s would be 

needed.  Even if melting were not to occur, it is likely that there would mechanical 

damage due to the shock and thermal stresses. 

 

Using the source strength range identified previously, the maximum pulse may be 

calculated.  The figure shows that in order to assure that a pulse greater than 45¢ is not 

performed, a source of ~ 6,100 n/s is necessary.  To ensure a pre-initiation occurs for 

lower pulse sizes the resulting background source must be increased.  The range of 

source strengths applicable to SPR were 5.3*103 – 1.1*105 n/s.  For the low end of the 

source strengths, Figure 20 illustrates that overpulses greater than 45¢ are possible.  The 

maximum source strength is off the axis scale indicating that a pre-initiation may occur 

for pulses smaller than 8¢. 
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CHAPTER 5: MONTE CARLO MODELING 

5.1 Background 

 

Monte Carlo techniques are routinely used to solve nuclear engineering problems by 

simulation of neutrons according to the Boltzmann transport equation.  Using the same 

technique, an analog Monte Carlo code was written to address stochastic neutron chain 

buildup and the non-extinction probability.  Analog refers to the faithful simulation of 

histories by neglecting the commonly used particle weight as a variance reduction 

technique.  Although at first glance Monte Carlo techniques appear to be quite favorable 

for solving the stochastic problem of interest, in fact for weakly supercritical systems the 

technique is quite inefficient.  The favoritism to the Monte Carlo technique is likely due 

to the fact that for any neutron in a medium, it will behave randomly (relative to the 

average behavior) with respect to how it interacts with that medium.  In addition, if this 

neutron induces a fission event, the number of neutrons emitted from the event has a 

certain probability distribution to it.  Thus, using pseudo-random numbers, one is able to 

randomly simulate different reaction events as well as sample a probability distribution 

for the number of neutrons from fission.  It is the value ofν , not ν  that makes the non-

extinction problem both interesting and non-trivial to solve.  Initially the Monte Carlo 

code included in this work was developed as a means to assess if the non-extinction 

probability could indeed be solved by the Monte Carlo method.  Prior to code 

development, it was realized that the overall efficiency of the code would be quite low, 

but nevertheless, information could be extracted from the code that other techniques 
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could not provide in a straightforward manner (namely the non-extinction probability 

equation). 

 

During the historical development of the knowledge base behind stochastic transport and 

non-extinction problems, computational power was sufficiently low (or non-existent) 

such that Monte Carlo was not a viable option.  Over the years it has grown in popularity 

due to increased computational power.  It is clear that with Méchituoua’s paper on using 

a Monte Carlo code to determine a metric for assessing divergence, Nolen’s Monte Carlo 

work on chain lengths in subcritical systems, and the Livermore work on Mercury that 

there is some renewed interest in the area (Méchituoua 2000, Nolen 2000, Greenman 

2007).  Nolen’s work was focused on subcritical systems such that there was a zero 

probability of observing a chain of infinite length.  Despite his work also being 

computationally inefficient for long chain lengths, computational requirements were 

manageable.  For the Livermore work, it is clear that allowing the code to be run on 

multiple processors is needed for most problems of interest (Greenman 2007). 

 

 

The Monte Carlo code developed in this work begins by injecting a neutron into a prompt 

critical medium.  Using the total cross-section for the system, a free-flight distance is 

calculated for the neutron.  This distance is determined from ( )
T

d
Σ
−−

=
ξ1ln  where ξ  is a 

random number bounded between zero and one.  Given the Monte Carlo code is 0-D, the 

distance to collision is not of much use; however, using the neutron velocity this distance 

can be converted into a time to collision which is of use.  With this collision time the 

neutron is then moved forward in time relative to the initial time.  At this new time, a new 
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random number is sampled to determine the type of interaction that occurred at the new 

time.  The types of interaction events used are: nothing (effectively scattering in a 

monoenergetic medium), capture (absorption minus fission), and finally fission (fission 

event with emission of 0-7 neutrons).  If the nothing event is selected, the neutron still 

exists at the new collision time.  If the neutron is captured, then it is removed at the 

collision time.  If a fission event occurs, the parent neutron is removed at the collision 

time.  A new random number is then called which then determines the number of 

neutrons emitted from the parent.  These neutrons are instantaneously inserted into the 

medium at the collision time.  As neutrons are produced at future times, these neutrons 

are written to an external “bank” file.  In 0-D, the only information retained is the time at 

which this neutron would appear.  Stepping the code into multiple dimensions or even 

energies would also require storage of additional information as well (i.e. Er ,,Ω ). 

 

Once the event for the parent has been sampled, the code then looks for more neutrons 

present at the current time.  This will arise if the current neutron being transported also 

had multiple siblings from the parent fission.  If neutrons are found, these are then 

transported independently of one another.  If no neutrons are found, the code then tracks 

forward in time until it finds the next neutron.  If no other neutrons exist, then the chain 

has died away.  Given that the Monte Carlo code must track all future “banked” events, 

the code slows down as the progeny begin to build up.  Thus for source histories made up 

of a few events, the total transport time is quick.  As the source history begins to 

“diverge”, the code slows down considerably and the computation requirements become 

taxing.  Depending on how “large” the user lets the population build up to also has 
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significant ramifications on run time.  On single processor machines, population sizes 

must typically be limited to < 100 million. 

 

5.2 Assessing Divergence 

 

One of the challenges associated with Monte Carlo modeling of the stochastic buildup is 

that the user must set an upper limit on the maximum chain size it will track.  The user is 

forced to select a large enough value for the overall population size to ensure the chain 

has indeed “diverged” yet small enough to be within the limits of current computers.  The 

words “diverged” are used loosely as it is difficult to determine if divergence has indeed 

occurred.  Unless the user could track populations similar to that of lowest reactor power 

for a fast reactor ensuring divergence is difficult. 

 

Others have discussed the problem with assessing divergence.  The Livermore work 

suggests that the maximum chain size be variable and dependent on the overall system 

reactivity.  They then recommend that the user select larger and larger values until there 

is effectively no change in the resulting probability of initiation (Greenman 2007).  The 

problem with this approach is that it requires running the same problem multiple times to 

establish divergence.  Méchitoua published a work for a point model where the 

probability of initiation was examined for different divergent chain length settings.  A 

parametric study was performed where the upper divergence limit was increased until 

there was no change in the POI.  An equation was developed for the divergent chain 
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population setting such that the chain length setting should be greater than 
1

10
−effk

 

(Méchitoua 2000). 

 

During the initial development of this work it was unclear what the setting for the 

divergent chain length should be.  Given this, a value of one million was chosen to ensure 

that there was as little of biasing as possible for the determination of the POI.  For all the 

reactivity ranges of interest, this cutoff is much greater than the recommended by 

Méchitoua above.  For a divergence metric of one million, it would suggest that this 

should be sufficient for system multiplications as low as 1.00001. 

 

5.3 0-D Results 

 

In addition to the deterministic approach to understanding the non-extinction problem, 

the Monte Carlo method can also be used to simulate neutron chain buildup/decay.  It can 

provide a means for assessing the accuracy of solutions obtained from approximate 

solution of the pgf equation.  To illustrate the stochastic buildup of neutrons a sample plot 

of source histories is shown below for a static supercritical system.  The plot contains 

5,000 curves, one for each injected source neutron. 
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Figure 21: Monte Carlo results for the neutron population as a function of time. 

 

For the histories presented, one can see that there are only 5 that “diverge”.  Again it is 

noted that the population was killed once it reached a size of one million.  A few 

interesting details can be seen from the figure.  For those chains that died away, most of 

them became extinct at very early times.  Only 2 of the 5,000 were able to hang around 

for long times before they also eventually died away (~ 14,000 and 30,000 ns).  As 

indicated in the figure, the population trace from these two histories oscillated back and 

forth.  Chains that exhibit this behavior are a nuisance to the calculation.  Given these 

chains do not quickly die away much computational time is spent with little resulting 

valuable information.  If the SS POI is the only metric of interest, these chains are 

without value.  Similar behavior is seen for those chains to do survive.  During the early 
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buildup these chains also exhibit some oscillatory behavior and it is not until populations 

> 105 are reached that the resulting time behavior becomes smoother.  Even for the 

population sizes presented above, the resulting time behavior for the five chains is not the 

same (the slope).  Given this, the chains may be on their way to truly being divergent, but 

complete divergence cannot be assessed from the plot alone. 

 

As shown in the above figure, there is some uncertainty as to how large is large enough 

for assessing divergence.  Méchitoua’s metric for assessing divergence occurs when the 

population reaches ~1,250 neutrons.  As is evidenced in the figure, this value is still 

within the “noise” of the population but appears to be high enough to capture most of the 

detail. 

 

Although time consuming, transport of a chain to one million particles is feasible on the 

average personal computer at the time of this writing.  Simulation of histories that 

buildup to a decent population size, hang around for a long time, and eventually die off 

are a nuisance to the simulation as a large amount of computer time was spent to 

determine that that source history did not diverge.  This is an inherently problematic issue 

with the Monte Carlo technique for solving this problem.  In the Mercury paper, they 

provide an additional time cutoff for source histories that are taking too long.  For the fast 

burst systems of interest here, the reactor proceeds rapidly into the prompt critical 

regime, but stays there intentionally until the pulse ensues.  As such, it was not deemed 

adequate to include a time cutoff for long lived populations.  In fact per Figure 21 the 

time cutoff would have to be large enough to miss the one chain that eventually dies 
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away (at ~ 30,000 ns).  Although not illustrated above, for systems that are just slightly 

prompt critical, the neutron behavior is exceedingly frustrating for the Monte Carlo code.  

As the net ratio of production to losses approaches unity, certain source histories can in 

fact oscillate for very long times.  A test case was run for a system at k=1.00001 and the 

run was finally terminated after taking more than 3 weeks of computation time on a 

single source neutron. 

 

For the five cases that did show divergence, it was clear that the time at which these 

populations reached “divergence” was different.  In fact, although not readily shown in 

that figure, there is a large disparity in the times at which these chains do diverge.  Not 

only is the magnitude of the number of source histories that diverge is of importance, but 

also the time at which these populations reach divergence. 

 

5.4 Divergent Chain Probability and Time to Divergence Data 

 

For each source neutron injected into the medium, it and its progeny are followed until 

they either die away or they reached the divergence metric of 106.  If the total number of 

divergent source neutrons are divided by the number of source neutrons injected into the 

medium, one obtains the divergent chain probability.  This probability of obtaining a 

divergent chain is equivalent to the infinite medium POI.  The results from the Monte 

Carlo simulations and infinite medium formula are plotted in the figure below. 
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Figure 22: Divergent chain probability comparing Monte Carlo results and Bell 

 

From the two curves shown in the figure, there is excellent agreement between the SS 

infinite medium solution and the Monte Carlo results.  Note that the infinite medium 

solution relies on the quadratic truncation; the Monte Carlo work used the full fission 

multiplicity distribution. 

 

As mentioned above, there is a large difference in the time it takes an individual source 

neutron to reach its divergence metric.  Due to the variation in the time at which 

divergence is attained, a simple tally was performed for each of these times.  These 

divergence times were then tallied for several different reactivity states.  One would 

expect that the time to divergence decreases as reactivity increases.  In addition, on a per 
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source neutron basis, the number that diverge should also increase as reactivity increases.  

Thus performing the calculation on strongly supercritical systems should be easiest and 

performing the calculation on weakly supercritical systems should be computationally 

challenging.  These expectations can readily be observed when one examines the “time to 

divergence” for various reactivity states.  The time to divergence is the total time it took 

from when the initial parent source neutron was injected to when the population hit one 

million.  If one plots out the time at which this occurs versus an arbitrary number 

assigned to each source neutron that diverged, the plot below is obtained.  The different 

color series correspond to different infinite eigenvalue states shown in the legend. 

 

 
Figure 23: Time to divergence v. arbitrary particle number. 
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The figure above shows the time to divergence for different source particles at different 

static reactivity states.  The figure shows a system that is weakly prompt critical (~ 1¢) to 

highly prompt critical systems.  In Figure 23, it is readily noticed that although the times 

to reach divergence do vary, the distribution of times range from tightly bound to widely 

disperse.  For high reactivity states the times to divergence are not as widely dispersed 

about the mean.  For slightly prompt critical systems, one can see a large disparity 

between the mean time to divergence and the overall spread about the mean.  The number 

of observed events is not directly proportional to the number of source neutrons injected.  

In other words, the average probability of initiation is different for the different reactivity 

states presented.  This can be observed by the table below which shows the number of 

source histories run in order to obtain the number of divergent events.  As anticipated, as 

the system reactivity decreases, the number of source histories run to obtain any 

divergent chain information greatly increases. 
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Table 6: Calculated divergent chain data. 
reactivity 

above 
prompt 

(¢) 

Number 
of 

divergent 
chains 

Number of 
source 

histories 

Divergent chain 
fraction with error* 

Total run 
time 

(days) 

0.916 896 15,895,000 0.000056 ± 0.000002 628.2 
1.54 923 8,905,000 0.000104 ± 0.000003 146.2 
4.58 1,554 5,120,000 0.000304 ± 0.000008 347.2 
9.15 965 1,665,000 0.000580 ± 0.000019 172.5 
11.53 1,409 1,850,000 0.000762 ± 0.000020 28.2 
15.37 1,439 1,450,000 0.000992 ± 0.000026 26.7 
22.85 858 575,000 0.001492 ± 0.000051 36.7 
23.04 816 500,000 0.001632 ± 0.000057 10.9 
31.96 1,184 550,000 0.002153 ± 0.000062 32.2 
38.37 1,210 500,000 0.002420 ± 0.000069 8.6 
45.59 1,743 605,000 0.002881 ± 0.000069 45.3 
53.66 1,756 500,000 0.003512 ± 0.000084 8.9 
68.22 1,558 335,000 0.004651 ± 0.000118 20.6 
76.54 2,519 500,000 0.005038 ± 0.000100 8.6 
90.73 1,008 175,000 0.005760 ± 0.000181 8.7 

*Errors were calculated from: 
( )

⎟
⎠
⎞

⎜
⎝
⎛ −⋅
⋅⎟
⎠
⎞

⎜
⎝
⎛

−
=

21
1

N
sNs

N
σ N where  is the number of 

source histories and  is the number of divergent chains (Brown 2006). s

 

Note the number of source histories that were required to be run to obtain similar 

numbers of divergent chains.  Even modest increases in reactivity corresponded to large 

changes in the divergent chain fraction.  The run time column shown in the table was 

included to provide the reader with a relative understanding of how long the simulations 

took.  The variation in run time as the multiplication factor increases is partially due to 

the randomness of the problem; a secondary cause is due to machines of unequal 

processing power were used to generate the results.  The intent behind the column is to 

merely highlight the very long run times required to run weakly prompt critical systems. 
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5.4.1 Comparison to Deterministic Results 

 

To compare the Monte Carlo results to the deterministic results, snapshots were taken in 

time of the neutron distributions.   For the different fixed times selected, the total 

numbers of neutrons found at that time are tabulated.  These numbers are then divided by 

the total number of initial source neutrons to obtain the probability of finding any number 

of neutrons at that time.  This is synonymous to the non-extinction probability.  To 

illustrate that the results between the Monte Carlo method and the deterministic 

formulation yield similar results, a case is presented for the non-extinction probability as 

calculated by both methods. 

 

 
Figure 24: Integral Monte Carlo results versus SN results for k∞ = 1.0005. 
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The figure plots the non-extinction probability using both methods and illustrates 

excellent agreement between the two methods.  The last time bin in the Monte Carlo 

results was taken to be at 10-3 seconds.  An additional data point was arbitrarily added at 

10-2 seconds which corresponds to the divergent chain probability discussed above. This 

plot shows that the non-extinction probability generated by either technique yields similar 

results. 

 

There was some initial interest in trying to run the Monte Carlo code with a ramp 

insertion of reactivity to mimic the behavior of SPR.  It is not difficult to see why this is 

computationally a bad idea on a serial machine.  For the non-extinction probabilities seen 

above, they are all above 10-4.  For the ramp insertion cases presented back in Figure 17, 

non-extinction probabilities of 10-9 are seen.  For even slower insertion times applicable 

to SPR (250 ms v. 100ms), the resulting probability would be even lower.  Thus in order 

to resolve the time dependence one would have to run much more than a billion particles 

to avoid excessive error.  As such, all efforts to model dynamic reactivity cases were 

dropped. 
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5.4.2 Determination of Divergent Chains 

 

Some discussion was previously provided on the divergence metric used to limit the 

maximum chain buildup.  What was not included was some discussion of the divergence 

metric on the time dependent results.  Figure 21 provided some examples of chains that 

might be seen in a prompt critical medium.  In that figure, the point at which divergence 

may be assessed could have been as low as 104 instead of the 106 used with no difference 

of the number that diverged and those that became extinct.  It is clear that if the 

divergence metric is lowered, the times at which divergent chains are assumed to develop 

is shorter.  If decreasing the divergence metric to some lower value is valid, the same 

distribution of times to reach divergence would not hold due to the random fluctuations 

still seen.  Reexamining Figure 21, suppose that the divergent chain metric was lowered 

to 103.  It would appear that there would be a total of seven divergent chains; the five 

applicable to the higher 106 divergence metric as well as two others.  By adding two more 

divergent chains than normally would have developed, the divergent chain percentage 

would be overestimated.  Given that the overall percentage is sufficiently small this may 

be an acceptable error; what may not be acceptable is the time at which divergence 

occurs.  The two chains that are included in the divergent chain percentage illustrate 

some interesting behavior.  Both of these chains exceed the divergence metric, then 

decrease below, then increase above it again, and then would eventually become extinct.  

With this oscillatory behavior the time to divergence behavior will be different for 

sufficiently low divergence metrics; despite that the error in the divergent chain 

percentage may be acceptable. 
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It is not challenging to illustrate this behavior numerically.  Using a single fixed 

reactivity state, the Monte Carlo results were re-run for different divergence metrics.  

Once the runs were complete, the probability distributions developed were summed over 

all  at different times, exactly the same as that shown in Figure 24N .  Upon doing so, if 

there is any difference in the time dependent non-extinction probability by lowering the 

divergence metric, the behavior described above should be apparent.  The figure below 

illustrates multiple different runs performed to support the argument. 

 

 
Figure 25: Integral Monte Carlo results for k∞ = 1.001 for different divergence metrics. 
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Multiple divergence metrics were chosen and the resulting integral number distributions 

plotted.  The results show that for large divergence metrics there is little to no change in 

the results as compared to the non-extinction probabilities.  For much smaller metrics, 

there is a significant difference between the time dependent results.  Lowering the 

divergence metric results in an overestimation of the number of divergent chains for late 

times.  Given the purpose behind this work is to compare to a reactor system, the time 

dependent behavior is of utmost importance.  To truly assess divergence while preserving 

the time dependent behavior, one should set the divergence metric to be large enough to 

reach the asymptotic SS POI.  It is also worthwhile to illustrate the difference in the SS 

divergent chain probability.  The table below records the data needed for comparison. 

 

Table 7: Divergent chain probability for different divergence metrics. 
Metric Source 

Histories 
Divergent 

Chains 
Divergent Chain 

Fraction 
Run Time 

(sec) 
Source 

Histories / 
Run Time 

1*106 16,300,000 16,527 0.0010139 ± 0.000007 21,874,212.8 0.75 
5*105 17,750,000 17,961 0.0010118 ± 0.000007 15,984,167.8 1.11 
1*105 16,250,000 16,405 0.0010052 ± 0.000009 4,255,826.7 4.27 
5*104 18,350,000 18,798 0.0010244 ± 0.000007 4,349,700.9 4.22 
1*104 29,750,000 29,998 0.0010083 ± 0.000006 1,247,502.8 23.85 
5*103 32,000,000 32,668 0.0010209 ± 0.000006 945,277.9 33.85 
1*103 30,000,000 47,457 0.001582 ± 0.000007 149,195.2 201.08 
1*102 22,450,000 581,839 0.025917 ± 0.000034 18,704.0 1,200.28 

 

Using similar numbers of source histories, the total number of divergent chains increases 

with a decreasing divergence metric.  The divergent chain percentage is overestimated for 

smaller and smaller divergence metrics.  For the multiplication factor used to generate the 

results; , Méchitoua’s metric for assessing divergence would be 104.  At this 

value the divergent chain fraction is similar to that of the highest metric chosen (however, 

001.1=∞k

 
 

- 102 - 



www.manaraa.com

 

the time dependent behavior is sufficiently different that one should be careful).  The 

total run time divided by the number of source histories is also presented in the table.  

This column provides a metric for the average time spent per source history.  The lowest 

divergence metric was the fastest to transport its particles while the highest metric took 

the longest.  This data was included not to prove this trivial point; rather, to provide the 

reader with an understanding for the length of time needed to transport the source 

histories.  In other words, even though large divergence metrics approximate the 

deterministic solution quite well, the run time for these metrics becomes computationally 

burdensome. 
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CHAPTER 6: 1-D NUMERICAL MODELING 

 

The deterministic non-extinction probability equation was derived and presented 

previously for an infinite system.  Others have extended the equation to its general form 

for which the non-extinction probability is then dependent on the injection space, angle, 

energy, and time.  These additional variables then describe the probability that a neutron 

chain has not become extinct given that the source neutron was injected at some position 

r , traveling with some angle Ω , at a given energy E , and a time relative to the terminal 

condition of ( )tt f − .  As was illustrated in previous chapters, point models are sufficient 

to provide the time dependent behavior; yet they lack any spatial profile that may 

develop. 

 

Prior to presenting the general equation, let ),,,( tErp Ω  be the probability that the 

neutron population including all progeny do not become extinct at the final time  given 

a single neutron injection at position 

ft

r , with direction Ω , with energy E  at time . t
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The general adjoint non-extinction probability equation is then: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )∑ ∫ ∫

∫ ∫

∫ ∫

=

Ω
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1

,
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',',','',

,',',,',',''

,,,,,,,1

π
χχ

π
χν

 (65) 

with a boundary condition of: 

 ( ) 0,,, =Ω tErp B  for all 0≥•Ω n  (66) 

and terminal condition: 

 ( ) 1,,, =Ω ftErp  (67) 

 

The boundary condition relates the non-extinction probability for all neutrons injected on 

the boundary with outward directions to zero as they cannot lead to divergent chains 

since they initially leak out of the system.  With regards to the terminal condition, the 

non-extinction probability for any neutron injected anywhere in the system at the terminal 

time must be unity as the initial injected neutron is still present. 

 

The notation in the general equation is similar to that presented in the 0-D section (except 

for the spatial and angular terms) or the general transport equation except for the χ  

terms.  The ( )'Eχ  term in the linear and non-linear fission terms represent the energy 
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dependent emission probability from fission.  The ( )rjχ  term in the non-linear fission 

term comes from the fission multiplicity data presented in Table 3. 

 

Solutions to the general equation have been found by others for limited systems; in 

particular, steady state systems.  The time dependence of the equation has not been well 

documented in the past, in particular any emphasis on dynamic reactivities or numerical 

performance.  To understand the importance of the time dependent solution as well as 

dynamic reactivities, the general adjoint equation was simplified.  The spatial domain 

was limited to that of a 1-dimensional (1-D) slab.  Monoenergetic neutrons are also 

assumed to remove any energy dependence in the model.  Such assumptions are not bad 

approximations to a FBR type of system, in particular to SPR as the geometry is annular 

and the system relies on fast neutrons only for which there is negligible energy transfer in 

the system. 

 

For the 1-D slab geometry of thickness  with monoenergetic neutrons, the non-

extinction probability equation becomes: 

L

 

( ) ( ) ( ) ( ) ( )

( ) ( )∑ ∫

∫

= −

−

⎟⎟
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 (68) 

 

 

 

 
 
 

- 106 - 



www.manaraa.com

 

With corresponding boundary conditions of: 

 ( ) 0,,0 =tp μ  for all 0<μ  (69) 

 ( ) 0,, =tLp μ  for all 0>μ  (70) 

 

and terminal condition: 

 ( ) 0.1,, =ftxp μ  (71) 

 

All neutrons injected at the boundaries with outgoing directions relative to the edge must 

be zero as such neutrons leak from the model.  The terminal condition remains as before.   

 

Solution to the standard adjoint equation, or the standard transport equation, is well 

documented in the open literature.  Iteration techniques in such references are for solving 

a linear problem.  The focus of this work was to focus primarily on the non-linearity of 

the equation.  The iteration routines outlined below begin with the terminal condition 

where the non-extinction probability is unity everywhere.  As one advances in time, 

forward sweeps (across the slab with forward angles) and backward sweeps (across the 

slab with negative angles) iterations are performed to allow the non-extinction probability 

to relax to the appropriate value at time.  Such forward and backward sweeps are 

performed over all angles and cells in the slab at each timestep. 

 

To solve the 1-D slab equation, multiple iteration routines were investigated.  These 

include a standard fixed point iteration routine, a lagged fission fixed point routine, and a 

linearized lagged fission fixed point routine.  Inclusion of synthetic acceleration was also 
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incorporated into the linearized routine as well. Each of the routines used in this work is 

addressed independently below.  Once the routines are introduced, results generated 

using the routines are provided for comparison. 

 

6.1 Fixed Point Iteration Routine 

 

A fixed point iteration routine was the first iteration scheme used to solve the time 

dependent non-extinction probability equation.  The iteration routine takes advantage of a 

time lagged source which is then the “source” for the next iteration.  The iteration scheme 

is popular in many codes for solving the linear transport equation and was deemed a good 

starting point.  Pending any numerical issues, it was also considered a viable candidate as 

existing transport codes which use this type of routine could be easily modified to solve 

stochastic problems, in addition to the deterministic ones they currently solve.  Thus 

production codes could be simply modified and could now solve an entire new class of 

problems with minimal code modifications.  The details of the iteration routine are 

outlined below. 
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It is noted that if the cross-section data is time independent then the non-extinction 

probability is time translation invariant and only depends on the time difference ( )tt f − .  

This translates the equation into a pseudo forward equation which is often more 

convenient for visualization.  For slab geometry where symmetry is maintained, setting: 

 μμ −=  (72) 

 

Eq. 68 then reduces to: 
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 (73) 

 

With reversed boundary conditions: 

 ( ) 0,,0 =tp μ , 0>μ  (74) 

 ( ) 0,, =tLp μ , 0<μ  (75) 

The terminal condition is then shifted to an “initial condition” 

 ( ) 10,, =μxp  (76) 

 

From the angular dependent non-extinction probability, a properly normalized scalar 

probability is defined as: 

  (77) ( ) ( )∫
−

⋅⋅=
1

1
0 ',',, μμ dtxptxp
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Inserting this into the equation: 
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For simplification of notation, also define the fission operator as the sum of the linear and 

non-linear fission components: 

 ( ) ( ) ( ) (∑
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The equation then simplifies to: 
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2
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S
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The discretization utilizes a fully implicit time discretization where  denotes the time 

index: 

s

 ( ) ( ) ( )s
s txpxp ,,, μμ =  for K,2,1,0=s  

 ss ttt −=Δ +1  

 

Then approximating the time derivative as:  
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Inserting this into Eq. 80 and combining terms: 
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Eq. 82 is solved at each  timestep with knowledge of the non-extinction probability 

from the  timestep where 

1+s

s
( )

tv
p s

Δ⋅
 is fixed over the 1+s  timestep.  For the first timestep, 

the initial condition is invoked.  The fixed time lagged term (on the right hand side) is 

denoted by ( )μ,xQ .  Iterations are used to resolve the spatial non-extinction probability 

within the slab over the  timestep.  The non-linear fission terms depend on the scalar 

probabilities and are therefore included in the scattering source and lagged in the sweeps.  

Over the timestep of interest the time indexes are dropped and using a new index  for 

the each iteration. 
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Spatial differencing is accomplished through standard diamond differencing where 

centered valued functions and the cell centers are approximated by the average of the 

corresponding neighboring nodes (cell edges).  The cell average probability is defined as: 
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Integrating Eq. 83 over the jth cell: 
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here 
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he above equation has both cell and edge defined probability terms.  A closure relation 

 

T

is therefore necessary.  The close relation assumes that the average across a cell is 

defined as half of the summation of the cell boundary values. 
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nother assumption is invoked on the non-linear terms: 

+ + k
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j

 

o address the angular domain, the standard discrete ordinates, SN approximation is used.  T

The discrete ordinates technique holds the angular domain at fixed discrete angles.  These 

discrete angles are taken to be Gauss-Legendre quadrature points, { }Mmm K,2,1, =μ , 

such that the angular domain in slab geometry from -1 to 1 is replaced by a weighted 

quadrature sum such that: 
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serting this into the differenced Eq. 85 yields: 
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or neutrons traveling in the positive direction :0>mμ  ( )k
jmp 2/1, −F  is known from the left 

re rela nshipboundary condition and using the diamond closu tio : 
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lugging this into the first term in Eq. 90, yields: 
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or all positive angles, the forward sweep is then: 
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nd with the closure relationship: 
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here  is known from the left boundary conditionw .  ( )k
jmp 2/1, −
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or all negative angles, the backward sweep is similar with: 
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nd with the closure relationship 
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here  is known from the right boundary conditio

nce the forward and backward sweeps are performed, an error is calculated.  The 

gh 

w n.  ( )k
jmp 2/1, +

 

O

sweeps are performed until convergence is obtained.  Convergence is assessed throu

the L2 norm error, or 2L , which is calculated from: 
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he L2 norm provides an error estimate from the square root of the squared absolute T

errors between successive iterations.  Thus ( )ip k
0  are the angular integrated, spatially 

dependent non-extinction probabilities from e thk  iteration and ( )ip k 1+  represent t

values post iteration. 
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Once both the iterations have converged to the specified error criteria, the process is 

repeated at the next timestep.  It will be shown later that the spectral radius, the relative 

error decrease from one iteration to the next, is quite variable throughout the iteration 

process.  In order to ensure that there are no false convergence issues, the specified error 

criteria for convergence is modified by the calculated spectral radius.  The spectral radius 

is estimated from the L2 norm of three successive  iterations [Warsa 2002]: k
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The error criteria is adjusted to the calculated spectral radius through: 

 ( ) ερε ⋅−= 1*  (99) 

 

This scaling is typically recommended to avoid false convergence.  A thorough 

investigation on the error criteria was performed to ensure that a sufficiently small value 

was chosen to preclude false convergence.  This can particularly become an issue as the 

non-extinction becomes small, thus the relative difference between successive iterations 

may be small.  It was found that selecting an error criterion of 10-10 was sufficient. 
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6.2 Lagged Fission Fixed Point Routine 

 

The lagged fission source iteration scheme is a modified version of the fixed point 

iteration scheme outlined above.  The major difference is that the fission terms, both 

linear and non-linear, are pulled out of the iteration loop and are then updated in a new 

outer iteration.  Within a given timestep, the fission terms are then resolved in the new 

outer iteration and then held constant over the inner iteration loop where the scattering 

term is resolved.  The inner iterations are now different such that it includes both the 

linear and non-linear fission terms and the time lagged source; all of which are held 

constant over the inner iteration.  The inner iteration now has effectively two fixed source 

terms, one from the fission terms calculated in the outer iteration and one from the time 

lagged source from the previous timestep.  The motivation to pull the fission terms out of 

the inner iteration was driven by the numerical performance of the fixed point routine.  

Discussions of the performance are addressed in a subsequent chapter.  The benefit of 

lagging the fission terms is that the inner iterations will be shown to converge quite 

rapidly. 

 

 

 

 

 

 

 

 
 

- 116 - 



www.manaraa.com

 

Rather than repeat the entire discretization, only those equations which are modified are 

listed below.  The new outer iteration is denoted by a  index.  At the beginning of each 

timestep, the time lagged source is updated through Eq. 86 (see above).  Then in the new 

outer iteration a lumped fission source term is evaluated which is a combination of both 

the linear and non-linear fission terms. 
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These terms are evaluated from the converged scalar probabilities of the previous 

timestep (as denoted by the  index) and are then fixed over the new set of inner 

iterations.  Once the inners have reached the convergence criteria, the outer iterations are 

also checked for convergence.  Convergence for the outers is determined through the L2 

norm of the scalar probability used to evaluate the fission terms, and the newly 

converged scalar probability from the inners, 
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The inner iterations are greatly simplified and for positive angles then become: 
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Now instead of only holding the time lagged source as fixed, both it and all of the fission 

terms are held fixed over the inner iteration.  After the inner iteration has reached the 

convergence criteria, another outer iteration, ( )1+l , is utilized where all of the fission 

terms are updated from the converged scalar probability of the inners and then again held 
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fixed over all the inners.  Note that the time lagged source is not updated until the next 

timestep where the process is repeated.  Once convergence has been obtained for both the 

inner and outer iterations, the simulation then advances to the 1+s  timestep. 

 

6.3 Linearized Lagged Fission Fixed Point Routine 

 

The final iteration routine investigated was that of a linearized lagged fixed point routine.  

The routine is similar to the lagged routine described above except that the fission terms 

(both linear and non-linear) in the equation are linearized and then evaluated about a 

constant value.  This routine takes advantage of the same inner and outer iteration 

architecture.  As with the lagged fission routine described above, both of the linear and 

non-linear terms are evaluated in the outer iteration and then held constant over the inner 

iteration.  The only difference is that the fission terms in the outers are linearized prior to 

being held fixed over the inners.  These terms were linearized in order to allow for 

acceleration and for subsequent Fourier analysis in which the theoretical spectral radius 

may be calculated.  Calculation of the theoretical value was necessary to understand the 

behavior and performance of the linearized routine.  Numerical results for the iteration 

routine, in particular how it performs against the theoretical analysis will both be 

presented in a subsequent chapter.  The details of the iteration routine are outlined below; 

however, only those details which are different are provided. 
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Revisiting the discretized equation (formerly Eq. 90): 
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The linearization begins by assuming the linear and non-linear terms can be linearized 

through: 
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where ( )
( )k
jp

p
NxN

0
0

'
∂
∂

= .  The  iteration index is used to highlight that these terms are 

evaluated with the converged solution from the inner iterations.  Inserting this into the 

discretized non-extinction probability: 
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or 
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The terms ( )( ) ( ) ( )[ xNppNQ
x k

j
k
jjm

j '
2 00, ⋅−+⋅
Δ ] are updated for each timestep and then 

held fixed over all the outers/inners at that timestep.  The terms ( ) ( )[ ]xNp
x k

j
j '

2
1

0 ⋅⋅
Δ +  are 

updated in each outer with the converged scalar inner k+1 iterate. 

 

The discretized inner iterations are identical to that of the lagged routine shown above 

and are not repeated. 

 

6.3.1 Diffusion Synthetic Acceleration of Inners 

 

The fixed point iteration routine is known to breakdown for systems that have optically 

thick cells where the meshing is typically greater than a mean free path and in which the 

scattering ratio, , (ratio of the scattering to the total cross-section) is near one.  The 

monoenergetic code described here is by definition of one energy and it was shown that 

for a fast fission energy range the scattering ratio is ~ 0.83 (Figure 4

Sc

).  Thus convergence 

issues known with this type of routine should not be an issue for the problems of interest.  

The standard diffusion synthetic acceleration (DSA) scheme was used to speedup the 

inner iteration performance.  Acceleration of the inner scattering iterations can be 

achieved by applying DSA to the inner iteration, and the subsequent performance of the 

inners should be similar to that seen when solving the standard transport equation.  After 

the forward and backward sweeps are performed for all angles, a DSA update is 
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performed.  The details behind using DSA are well documented and are not present here; 

rather, performance results are provided to give an indication of the speedup. 

 

For the cross-sections presented in Figure 4, the scattering ratio, TSSc ΣΣ=  is 0.833.  

Although this is low enough to not be much of a concern, DSA on the inners was 

included for completeness.  The table below highlights the number of inner iterations 

required for convergence by numerically adjusting the scattering ratio.  The table is 

included to highlight that the DSA update on the inners performs according to 

expectation. 

 

Table 8: Performance of the inner iterations with and without acceleration. 
Simulation timestep 1 ns Simulation timestep 109 ns Scattering 

ratio  Sc Unaccelerated Accelerated Unaccelerated Accelerated 
0.1 4 4 6 5 
0.2 5 4 8 5 
0.3 5 4 10 6 
0.4 6 4 11 6 
0.5 6 5 14 7 
0.6 7 5 17 8 
0.7 8 5 22 9 
0.8 10 6 31 10 

0.833 11 6 34 10 
0.9 14 6 71 10 
0.95 23 7 171 10 
0.99 83 9 1103 10 
0.995 152 9 2251 10 
0.999 647 10 10549 10 
0.9995 1208 10 19754 10 
0.9999 5072 10 83826 10 
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As the scattering ratio approaches unity, the number of inner iterations greatly increases 

for the unaccelerated case.  Applying the DSA scheme allows the number of iterations to 

be reduced to a manageable number.  Although the reduction in inner iterations is small 

for the scattering ratio applicable to fast burst reactors, inclusion of DSA on the inners 

proves to be an acceptable means of reducing the overall iteration count. 

 

6.4 1-D Verification Testing 

 

An important feature of any code is a benchmark for comparison of results.  Good 

agreement was already shown between the analytical and numerical analysis presented in 

0-D.  Unfortunately there is no general time dependent analytical solution in 1-D to 

compare the numerical results against.  Given this, there are other features of the code 

that can be checked against expected results to determine whether at least certain portions 

of the numerical solution are behaving according to expectations. 
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6.4.1 Critical Slab Thickness 

 

In order to verify that the code was performing as expected without the non linear terms, 

different critical slab thicknesses were computed and then compared to known analytic 

solutions (Bell 1970).  Using the methodology outlined in Duderstadt, a k-eigenvalue 

calculation was performed (Duderstadt 1976).  Effectively, the linear fission term is 

divided by a scaling factor k and all non-linear terms are ignored.  The value of keff (as 

well as the scalar probability) is iterated upon until sufficient convergence has been 

obtained.  For the k-eigenvalue update, the following approximation is made. 
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where  is the spatially dependent scalar probability for the  cell.  The standard 

vacuum boundary conditions were invoked on the slab. 

( ) ( )xp k
0

thx

 

Upon convergence of both the k-eigenvalue and the scalar probability, the following 

result was obtained for the eigenvalue versus slab thickness. 

 

Figure 26: Numerical eigenvalues for critical slab thicknesses. 
c Slab Thickness (cm) keff 

1.02 34.80218 1.0000067 
1.05 20.86878 0.9999942 
1.10 14.00048 1.0000163 
1.20   9.31757 0.9999212 
1.40 13.67975 0.9999649 
1.60 10.86691 0.9999542 
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The numerical results agree well with the expected slab thicknesses.  To ensure the 

results were not being biased by the number of slab cells or the angular quadrature order, 

300 spatial cells were used along with 64 quadrature ordinates (S64). 

 

Inclusion of the k-eigenvalue search was also necessary in order to relate a slab thickness 

to its multiplication factor.  Otherwise one would not know what the calculated non-

extinction probability corresponded to.  Throughout the 1-D results, a k-eigenvalue 

search is initially performed.  This additional calculation is fast and adds a slight increase 

in overall computation time. 

 

6.4.2 Infinite Medium Eigenvalue Comparisons 

 

A means to check the steady state POI is to invoke reflective boundary conditions on the 

slab boundary.  Upon doing so, the finite slab will become an infinite media.  As such the 

solution anywhere within the slab should equate exactly to the 0-D infinite media result at 

long times.  The boundary condition on the slab edges is modified by setting the outgoing 

current to be the incoming current at the same angle.  The time dependent result was 

computed and is shown below.  For the plot below the complete fission multiplicity was 

used and the infinite eigenvalue was 1781.2=∞k . 
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Figure 27: Time dependent 0-D solution v. 1-D reflected solution. 

 

Both the 0-D and reflected 1-D solutions begin at the same initial probability of 1.0.  The 

0-D results were generated using the Newton iteration routine and the 1-D results were 

generated using the lagged fission source routine.  Given that the 0-D solution is by 

definition dimensionless, the solution begins to decay away quicker than the 1-D 

solution.  This is primarily due to the fact that neutrons which leak out of the 1-D slab 

solution are reflected back into the slab at the next interval.  Thus neutrons are 

transported throughout the slab and conservation is maintained by preventing any 

neutrons from exiting the core.  Due to this the 1-D solution takes longer to reach the SS 

POI than the 0-D solution.  However in the limit as time goes to infinity, both solutions 
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converge to the same SS POI value indicating that the 1-D routine yields the appropriate 

SS POI. 

 

6.4.3 Importance of the Quadrature Order 

 

The quadrature order approximation for the angular domain has great importance on the 

overall solution.  To highlight this, the following figure presents the results of the time 

dependent solution by varying the quadrature order.  The intent of this plot is to highlight 

the relatively high SN order needed.  For the time dependent slab results, the slab 

midpoint is plotted as a function of the SN order selected.  The slab thickness was 9.5523 

cm which corresponded to a system multiplication factor of 1.01. 

 

 
Figure 28: Importance of quadrature order on the time dependent slab midpoint values. 
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It is readily seen that the quadrature order has a large impact on the resulting time 

dependent behavior.  Perhaps this is best seen by the S4 case.  The non-extinction 

probability goes to zero for this curve as the resulting eigenvalue calculated for the 

system was less than 1.0.  It can be seen that a quadrature order greater than ~ 32 is 

sufficient to capture the full time dependent behavior.  The impact of the quadrature order 

can also be seen on the calculated eigenvalues. 

 

Table 9: Importance of quadrature order on the calculated eigenvalue. 
SN Order Calculated keff 

512 1.01003297 
256 1.01003144 
128 1.01002528 
64 1.01000044 
32 1.00989916 
16 1.00947547 
8 1.00755365 
4 0.99410899 
2 0.89942096 

 

Even though decent time dependent numerical results indicate that a quadrature order of 

~ 32 is sufficient to capture the time dependent results, larger values may be needed for 

adequate resolution of the angular domain.  Unless otherwise noted, all results used in 

this work use the S64 approximation. 
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CHAPTER 7: 1-D NUMERICAL RESULTS 

 

Using the numerical routines presented, analyses are performed to understand the time 

dependent non-extinction probability.  Unless otherwise noted, all of the results below 

were generated with the linearized lagged routine.  Although this will be examined in 

detail in the subsequent chapter, there is little difference in the time dependent solutions 

between the different iteration routines.  Rather, differences are seen with the iteration 

performance.  The 1-D slab with static reactivity was the first system investigated.  

Initially the simulation timestep was examined to determine if the same timestep behavior 

seen in the 0-D system was also seen in the 1-D case.  Next the slab thickness was varied 

to examine the importance of the non-extinction probability on the slab width.  The 

spatial and angular components of the non-extinction probability were examined.  An 

examination of the spatial solution obtained from the linear eigenvalue value solution is 

provided relative to the spatial solution for the non-linear problem.  For the static plots, 

the full fission multiplicity was utilized and a slab thickness of 421.9=L  cm 

( )001.1=effk .  Results are also extended to examination of a dynamic system with an 

external source. 
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7.1 Timestep Analysis 

 

The non-extinction probability was solved for a fixed reactivity state.  The solution as a 

function of time was tracked at both the slab midpoint and edge value.  The simulation 

timestep was then varied to determine its importance on the time dependent behavior. 

 

 
Figure 29: Importance of timestep on time and spatially dependent solution. 

 

The shapes of the curves are quite similar to those presented in Figure 13 for the 0-D 

analysis.  The major difference between the two figures is the magnitude of the non-

extinction probability for which the 1-D results are lower due to the spatial mode that 

develops in the slab geometry.  The slab midpoint has the highest probability and the slab 

edges will have the lowest.  In the figure, both the slab midpoint and edge values are 

shown for a 1ns timestep.  Although the shapes of the curves are identical, the resulting 

magnitude of the slab edges is consistently lower.  A spatial mode is shown to develop 
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for all of the results presented in the 1-D section; unless otherwise noted the non-

extinction probabilities presented are always for the slab midpoint. 

 

The timestep behavior seen in 1-D mimics that seen in 0-D.  Large timesteps may be 

taken in order to reach the SS POI.  As also shown in the 0-D case, the initial time 

dependent behavior is incorrect and typically it takes multiple timesteps to correct to the 

small timestep probability.  The necessitated use of multiple timesteps could be corrected 

if a higher order time differencing scheme is used.  Nevertheless any of the timesteps 

selected yields the same SS POI. 

 

7.2 Importance of Slab Thickness 

 

To highlight the importance of the slab size on the time dependent solution, multiple slab 

thicknesses are presented.  Slab sizes were chosen to be highly subcritical, exactly 

critical, and highly supercritical for emphasis.  These results are shown in the figure 

below. 
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Figure 30: Importance of slab size on the time dependent survival probability. 

 

As seen in 0-D, all neutron progeny in subcritical systems must go to zero at late times.  

As the slab becomes more subcritical, the descent to extinction is hastened.  For a system 

exactly critical, the time dependent non-extinction probability also dies away as was seen 

in 0-D.  For systems above prompt critical, a SS POI is reached.  As the system becomes 

more prompt critical, the time at which the steady state value is reached diminishes and 

the overall magnitude of the POI increases. 

 

The non-extinction probability as a function of the injection position, angle, and time was 

calculated.  The resulting 3-D plot provides a graphical depiction of the impact of the 

injection position and angle on the non-extinction probability.  As the time from the 
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injection increases, the resulting spatial shape is constant and only decreases in 

magnitude indicating a spatial mode has developed.  The figure below only includes 

times up to the point at which the spatial shape was preserved for a system with 

. 001.1=effk

 

 
Figure 31: Non-extinction probability as a function of injection point, angle and time. 

 

The non-extinction probability is plotted as a contour for the spatial, angular, and time 

domains.  At times close to the initial condition, the non-extinction probability is at its 

largest value. The first contour shown corresponds to a time of 10-7 seconds.  As the time 

from the initial condition increases, the magnitude of the non-extinction probability 

significantly decreases.  The non-extinction probability is the highest at the center of the 
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slab and decreases for injection points at the slab edges.  Relative to the slab edges, 

neutrons injected at highly peaked angles into the slab also have higher non-extinction 

probabilities.  As anticipated, neutrons injected in directions traveling towards the slab 

edges have a significantly lower non-extinction probability.  The shapes of the contours 

after times ~ 2*10-5 seconds are essentially constant and only begin to decrease in 

magnitude to the SS POI. 

 

To illustrate the spatial shape of the non-extinction probability within the slab, the figure 

below plots the non-extinction probability as a function of the slab thickness.  The non-

extinction probabilities shown are the angular integrated values.  Thus the non-extinction 

probability at any point within the slab represents the non-extinction probability for a 

neutron injected isotropically at that insertion time. 

 

 
Figure 32: Spatially dependent non-extinction probability at different simulation times. 
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Almost immediately the solution begins to drop from the initial condition in magnitude 

and in addition, a spatial mode begins to develop.  For sufficiently late times, the steady 

state profile has developed in the slab and does not change.  Once this time has been 

reached ( )410−≥t , the solution has reached the SS POI. 

 

Using multiple slab thicknesses, the 1-D code was run until the SS POI value was 

reached.  Similar to the 0-D results shown in Figure 15, the 1-D calculated SS POI 

combined with the calculated system multiplication factor is shown in the figure below 

for different fission truncations. 

 

 
Figure 33: 1-D SS POI versus system multiplication factor. 
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The different fission truncations exhibit similar behavior to those seen in the 0-D 

analysis.  The quadratic truncation underestimates the POI significantly while the cubic 

truncation overestimates the POI.  For truncations fives terms or higher, little change is 

seen in the calculated SS POI.  Also as expected there is a negligible difference in the 

fission truncations for small multiplication factor systems. 

 

7.3 Linear vs. Adjoint Spatial Profile 

 

It was noted by Bell and Lee for weakly prompt critical systems that the ratio of the 

linear solution (obtained from the linear k-eigenvalue search) to that of the non-linear 

non-extinction probability for an isotropic source is a constant (Bell 1976).  As the 

multiplication factor increases, divergence from a constant should be seen.  To test this 

comparison the angular integrated, spatially dependent non-extinction probability from 

the k-eigenvalue search is plotted along with the spatial solution from the non-linear 

problem at various timesteps.  Multiple timesteps were plotted primarily due to the fact 

that the solution over the first few timesteps may be initially different due to the initial 

condition.  The figure below plots the spatial solutions for a system with a multiplication 

factor of 1.001.  As the magnitude of the non-extinction probabilities are all different, 

each of the curves below was normalized to the slab midpoint value.  The goal was to 

highlight the differences across the length of the slab. 
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Figure 34: Ratio of k-eigenvalue to non-linear transport solution for k=1.001. 

 

The linear solution is shown with a solid red line.  The other curves correspond to the 

scalar solution at the end of the indicated timestep.  The solution after multiple timesteps 

quickly relaxes to the same spatial shape as the linear problem.  This confirms the 

statement made by Bell and Lee in that the forward equation provides decent solutions to 

the adjoint equation for small multiplication factors.  The similarity between the results 

may not be much of a surprise as in one group calculations, the solution is self adjoint.  

The upper range of reactivity applicable to reactor operation is shown below for a 

multiplication factor of 1.01. 
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Figure 35: Ratio of k-eigenvalue to non-linear transport solution for k=1.01. 

 

The spatial solution for the higher multiplication factor case still provides a decent match 

for the converged non-linear problem to the linear eigenvalue solution.  As the 

multiplication factor is increased, a significant deviation develops between the two 

solutions.  However the multiplication factors at which this occurs far exceed those seen 

in real systems.  The benefit seen by the results shown in the two figures above is that it 

suggests that one may separate out the non-extinction probability, ( txp ,, )μ , into a spatial 

component, ( )μ,xp

( )tp

(xp ⋅

 found from the linear eigenvalue problem and a temporal 

component, .  Thus for weakly prompt critical systems, one may assume that 

( ) ) (tptxp = )μμ ,,, .  If the separation of variables assumption holds, this opens 
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windows for further analysis.  The spatial solution, ( )μ,xp , could be found using a 

standard production code and then a point kinetics model could be used to describe the 

temporal component.  The hybrid point kinetics model could then be used to quickly, and 

fairly accurately, describe the time dependent behavior and apply it to reactor systems of 

interest. 

 

7.4 Dynamic Reactivity: 

 

In an attempt to model a SPR like system in 1-D, a dynamic reactivity insertion was 

modeled by adding a reflector material adjacent to the reactor slab.  Instead of having 

both sides of the slab being bare, one side of the slab is reflected by an aluminum 

reflector.  There is no direct way to model a reflector insertion in a 1-D slab, an 

approximation was invoked through a time dependent albedo.  The reflector material was 

assumed to be initially translucent.  This is equivalent to making the reactor initially bare.  

Over time the reflector density is increased such that it becomes fully opaque at the final 

reflector insertion time.  Thus neutrons which leak out of the core initially have a small 

probability of being reflected back into the reactor and at late times have a much larger 

probability of being reflected.  Monoenergetic cross-sections were taken for aluminum.  

The values assumed are: 0=ΣF  barns, 70.3=ΣS  barns, and 75.3=ΣT  barns.  The 

figure below graphically shows the reflector transition. 
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Figure 36: Graphical depiction of reflector insertion in 1-D. 

 

Once the reflector element is completely inserted, it is held opaque for the remainder of 

the simulation.  In order to determine the system multiplication factor, the standard k-

eigenvalue search was performed.  The system multiplication factor was calculated over 

the entire time domain of interest.  The multiplication factor was initially fixed to 0.9998 

and the final multiplication factor of 1.0137 was inserted over 10-4 seconds.  This 

insertion is shown below. 

 

 
Figure 37: Dynamic reactivity insertion with external reflector element. 
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The figure shows that the system multiplication factor is inserted linearly over time.  The 

system crosses critical at ~ 9*10-7 seconds.  A 2-D contour plot is shown below at a time 

of 10-7 seconds.  The contours represent the non-extinction probability as a function of 

the injection  position and angle. 

 

 
Figure 38: 2-D non-extinction probability contour plot of the injection point and angle at 10-7 sec. 

 

For the contour plot shown, the reflector region is only ~ 0.1% opaque (shown by the 

vertical dotted line on the right hand side).  The contour plot spans the spatial and angular 

domain.  In the plot above, position 0 to 9.37 cm was occupied by the reactor fuel, and 

the remainder was occupied by the reflector.  It is noted that for injection points within 
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the reflector that neutrons traveling away from the reactor lead to non-zero non-extinction 

probabilities (the zero non-extinction probability is shown in dark purple).  The general 

shapes of the contours in the slab are similar to those seen above for a static system 

(Figure 31).  The edge of the slab closest to the reflector exhibits higher non-extinction 

probabilities than the bare slab side.  The highest non-extinction probability occurs at the 

middle of the slab at an injection angle of ~90°. 

 

The contours shown above exhibit almost perfect symmetry due to the fact that the 

reflector was only marginally translucent at the time indicated.  To highlight the 

difference in the contours, the same 2-D contour plot is provided at the full reflector 

insertion time.  The figure below shows the contour at 10-4 seconds. 
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Figure 39: 2-D non-extinction probability contour plot of the injection point and angle at 10-4 sec. 

 

Once the reflector is fully inserted localized increases are seen in the non-extinction 

probability.  Even with the reflector fully inserted, small non-extinction probabilities are 

found for neutrons injected at highly peaked negative angles.  The reflector is modeled 

with aluminum at a density of 2.7 g/cc which is ~ 6.3 times less dense than the uranium 

fuel.  Thus even though the aluminum reduces the amount of leakage on the right face, 

the contours illustrate its overall effectiveness. 

 

 
 

- 142 - 



www.manaraa.com

 

The non-extinction probability at the slab midpoint and the non-extinction probability 

within the last cell on the edge of the system (where the reflector is located) are plotted 

below. 

 

 
Figure 40: Time dependent non-extinction probability for the slab midpoint and reflector edge. 

 

The slab midpoint curve exhibits a similar shape as those seen in the 0-D analysis section.  

Once the reflector is fully inserted, the non-extinction probability no longer increases and 

the POI has been reached.  The reflector edge probability is initially one half as only 

neutrons injected into the direction of the slab can lead to a non-zero non-extinction 

probability.  Neutrons injected into the reflector exhibit similar behavior as those in the 

slab, only lower in magnitude. 
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To highlight the importance of a constant internal neutron source, the non-extinction 

probability results shown above were folded into a constant neutron source.  At discrete 

timesteps, the angular and spatial integrated non-extinction probabilities were tabulated.  

These were then accrued and post-processed to give the source non-extinction 

probability.  Although presented previously for general systems, the source non-

extinction probability for the slab system is calculated through: 

 ( )
( ) ( )∫ ∫ ∫−= −

⋅⋅⋅⋅⋅−
t

t

L
dtddxtxptxSL

S etP 0 0

1

1
'''',','',','

21
μμμ

 (107) 

 

Assuming the source emits neutrons uniformly throughout the slab allows it to be pulled 

out of the integrals.  Note, this also implies that the source emits neutrons within the 

reflector which indicates a physical unreality.  The figure below plots the source non-

extinction probability for the dynamic reactivity case shown above for various source 

strengths. 
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Figure 41: Source non-extinction probability for dynamic reactivity insertion. 

 

The shapes of the curves are similar to those seen in 0-D.  The source non-extinction 

probability increases and then nearly becomes constant.  This region corresponds to the 

non-extinction probability being subcritical.  As the POI value is approached, the source 

non-extinction probability increases.  In addition, as the source strength is increased the 

time to assure divergence also increases.  Confirming the results seen in 0-D, marginal 

increases in the source strength equate to large differences in the time to divergence. 
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CHAPTER 8: ITERATION PERFORMANCE 

 

So far discussion has only been geared towards the numerical solution of the non-

extinction probability without any focus on the numerical performance of the routines.  

This chapter shifts from a focus on the exact time dependent solution to instead focus on 

how the solution was obtained numerically; namely the iterations needed to achieve 

convergence.  Details regarding each of the iteration schemes were shown earlier.  For 

the iteration performance analysis only static reactivities are considered.  Numerical 

results were presented previously for the impact of the timestep on the overall non-

extinction probability.  It was illustrated that in order to resolve the full time dependent 

non-extinction probability small timesteps must be used.  Little focus was presented on 

the iteration performance of the timestep and how it impacts the iteration behavior.  

Small timesteps must be used to provide adequate resolution of the time domain.  Large 

timesteps can be used to allow the user to reach the SS POI in a few timesteps.  This is 

desirable for scoping studies where the full time dependent behavior is not needed.  Thus 

even though the SS POI may be always be achieved, how the iteration routines behave 

while getting to the POI and the value of the POI at that point (when convergence is 

obtained) will also be discussed. 
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8.1 Fixed Point Iteration Routine 

 

In the standard fixed point iteration routine, there is only one iteration loop in 

monoenergetic problems.  For the purposes of future comparisons, it will be considered 

an inner iteration.  To illustrate the performance of this routine with the single iteration 

loop the figure below shows two families of curves; one for a small timestep (1 ns) and 

the other for a large timestep (1e9 ns).  For each timestep presented, multiple cases are 

shown which range across the entire spectrum of multiplication factors.  The intent of the 

figure is not to trace every single curve (as many overlay one another); rather it is to see 

general trends. 

 

 
Figure 42: Number of iterations per timestep for the source iteration routine with full multiplicity. 

 
 

- 147 - 



www.manaraa.com

 

 

The figure plots the total number of iterations needed to reach SS.  The x-axis for the two 

families of curves may be plotted against one another despite that these refer to different 

times (since the timesteps were different).  The large timestep curves are shown in dashed 

lines.  The lowest system multiplication factor case ( )001.1=k  took the longest to reach 

SS with a total iteration count of 451,961 for a small timestep.  In addition for the large 

timestep cases, the number of iterations needed is quite high.  For the lowest 

multiplication factor case some 40,716 were needed during the first two timesteps.  The 

large number of iterations needed is primarily due to the fact that the non-extinction 

probability at the initial condition is one.  As the source neutron is injected at some point 

into the distant past, the code is trying to reach the SS POI in one pass.  Thus it is 

spending much time trying to resolve the SS solution.  For such small prompt reactivity 

cases, this can be a formidable challenge as the SS POI values are typically quite small.  

The fixed point iteration is a standard routine commonly used in iterative numerical 

problems.  The figure above shows that although the routine can solve the non-linear 

equation, large numbers of iterations may be needed; particularly for large simulation 

timesteps.  The benefit of examination of the fixed point iteration routine is that it 

highlights that even a rudimentary iteration scheme is able to solve non-linear problem.  

Results are only presented for the full fission multiplicity as there is little difference seen 

between the quadratic results and those shown above.  Such similarities do not hold for 

the other iteration routines investigated. 
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8.2 Outer Iteration Behavior 

 

Given the poor performance of the fixed point iteration routine, focus was diverted to a 

lagged routine.  Removing the fission terms from the inner sweeps allows for rapid 

convergence of the inner scattering iterations.  Issues associated with resolving the fission 

terms can be borne out in the segregated outer iteration.  An examination of the outer 

iterations is provided.  The total number of outers per timestep was examined; similar to 

that of the inners shown above where both small and large timestep behavior were 

examined. 

 

8.3 Lagged Fission Source Routine 

 

Using the lagged source routine, plots of the outers to SS are provided.  The plot below 

shows the total number of outers used for each timestep for the full multiplicity using a 

small timestep.  In order to retain some of the detail, small and large timestep cases were 

unable to be plotted on the same figure.  Two figures are provided, the first for the small 

timestep and the second for the large timestep. 
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Figure 43: Outers per timestep seven term multiplicity lagged fission source routine, small timestep. 
 

Using the full multiplicity, the total number of outers for each timestep is presented using 

a timestep of 1 ns.  As expected, the low multiplication factor cases took the longest to 

reach SS.  The number of outers for each timestep is essentially constant and small across 

the entire time domain.  As was seen with the source iteration routine, despite the small 

number of outers for each timestep, there were still a total of 181,884 outer iterations to 

reach SS for the low multiplication factor case. 
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The same plot for a large timestep of 1 sec using the full multiplicity are presented below. 

 

 
Figure 44: Outers per timestep seven term multiplicity lagged fission source routine, large timestep. 
 

Using a large timestep, similar results are seen with the fixed point iteration routine.  

Only a few timesteps are needed to reach the SS POI.  The small multiplication factor 

cases exhibit the largest number of outers needed to reach SS.  For the  case 

presented above, a total of 14,024 outer iterations were required to reach SS. 

001.1=k
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The number of outers shown above may be misleading with respect to the non-extinction 

probability after each of these timesteps.  The small multiplication factor cases require 

more iterations as the SS POI value is much lower than the higher multiplication factor 

cases.  This can be illustrated with the results shown in the table below for the slab 

midpoint non-extinction probability. 

 

Table 10: Non-extinction probability after each timestep. 
Non-extinction Probability keff 

1st timestep 2nd timestep 3rd timestep 
1.001 0.0011651427 0.0011566860 0.0011566859 
1.01 0.0115420968 0.0115412421 0.0115412420 
1.1 0.1109860571 0.1109859677 0.1109859676 
1.25 0.2613891479 0.2613891104 0.2613891103 
1.5 0.4785057870 0.4785057681 0.4785057680 
1.75 0.6602618856 0.6602618745 0.6602618744 
2.0 0.7956149506 0.7956149451 0.7956149450 
2.1 0.8216860014 0.8216859974 0.8216859974 

 

For most of the multiplication factors shown, the SS POI is nearly reached in the first 

timestep.  Multiple timesteps are needed to increase the accuracy of the calculated POI.  

Using a higher order scheme (particularly in time) could result in the POI being reached 

in the first timestep alone; however, the large number of outer iterations would still be 

present. 

 

Results generated for both the two terms (not presented) and seven terms were combined 

into a concise format.  The total number of outers to reach the SS POI (over the entire 

time domain) is divided by the number of timesteps to reach the POI.  These are then 

plotted against the system multiplication factor. 
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Figure 45: Outers to SS per timestep for the lagged fission source routine. 

 

When the total number of outers to reach SS is divided by the number of timesteps to 

reach the POI, a proper comparison can be made between the results.  For both of the 

small timestep cases, it takes on average approximately 3-4 outers per timestep to reach 

SS across the entire multiplication factor domain.  For the large timestep case, the 

number of outers is quite variable.  For small system multiplication factors both cases 

have high numbers of outers per timestep.  As the multiplication factor is increased, the 

number of outers decreases.  This large number of outer iterations seen with large 

timesteps lead to the idea of the linearized routine as a means to speed up the calculation 

to SS.  Acceleration of linear routines (particularly the neutron transport equation) has 

been addressed for some time now in the literature.  Linearizing the routine allows one to 
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take advantage of such acceleration schemes; in addition, it allows one to perform 

theoretical analysis of the discretized equation. 

 

8.4 Linearized Lagged Fission Source Routine 

 

In addition to the large iteration counts seen above, the linearized routine was 

implemented such that a valid comparison to the theory could be made.  Linearizing the 

equation transforms the overall non-linear pde into a linear one.  Prior to delving into the 

theoretical analysis of the routine, numerical performance results are provided.  The small 

timestep case for the linearized routine is not included as the results are nearly identical 

to the performance of the lagged routine.  The results for a large timestep however are 

shown below. 
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Figure 46: Outers per timestep seven term multiplicity linearized routine, large timestep, 

linearization about 20 =p . 

 

Using a large timestep, different results are seen for the number of outers for each 

timestep.  Initially the number of outers was small which was promising.  For the small 

multiplication factor cases the number of outer iterations increases dramatically after 

several timesteps.  The high multiplication factor cases had the lowest number of outers 

for each timestep.  For the low multiplication factor case, the total number of outers to 

reach the POI was 23,479.  Despite the large number of outer iterations, it appears that as 

the POI is reached convergence becomes more taxing.  The increasing behavior for small 

multiplication factor cases was the driver behind the theoretical analysis to follow.  As 
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was shown for the lagged routine, the non-extinction probability after various timesteps is 

shown for selected cases. 

 

Table 11: Non-extinction probability after each timestep. 
timestep keff = 1.001 keff = 1.01 keff = 1.5 keff = 2.0 

1 0.3999327954 0.4039100712 0.6249198048 0.8202648156
2 0.1857925449 0.1905607674 0.5033448640 0.7966400642
3 0.0895992718 0.0946949770 0.4794958177 0.7956182750
4 0.0441908607 0.0495290023 0.4785074091 0.7956149452
5 0.0221677464 0.0278155184 0.4785057706 0.7956149451
6 0.0113265144 0.0174991608 0.4785057705  
7 0.0059545496 0.0130452834   
8 0.0032942207 0.0116958741   
9 0.0019970467 0.0115432490   
10 0.0014053978 0.0115412425   
11 0.0011940578 0.0115412421   
12 0.0011578195 0.0115412421   
13 0.0011566870    
14 0.0011566859    
15 0.0011566858    

 

Unlike the lagged routine where the POI was nearly reached in the first timestep, the 

linearized routine results show a much greater variation.  This should not be a surprise as 

the problem being solved is the linearized linear problem and not the non-linear problem 

of interest.  However, after multiple timesteps the solution to the linear problem tends to 

that of the non-linear problem.  The troublesome feature of the routine is the fact that as 

the POI is approached the iteration count continues to increase.  Take the  case 

for example.  At the 10-12 iteration, the POI is nearly reached, yet the iteration count is at 

its highest.  Relaxing the convergence criteria on when the POI is reached can alleviate 

some of the iteration counts. 

001.1=k
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Similar results were generated for the quadratic truncation and also small timesteps for 

both cases.  It was interesting to note that when a large timestep was chosen, that a 

number of the quadratic cases did not converge.  For the combined plot shown below, the 

quadratic large timestep curve only had two points at which the code converged. 

 

 
Figure 47: Outers to SS per timestep for the linearized lagged fission routine linearization about 

20 =p . 

 

When the results are combined such that the number of outers to reach SS is divided by 

the number of timesteps to reach SS, similar results are seen as for the lagged fission 

source routine.  For the small timestep cases small numbers of outers are seen across the 

entire fission multiplicity.  For the large timestep cases, the full multiplicity performance 
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increases as the multiplication factor increases.  For the quadratic truncation where the 

time absorption term goes to zero only a few of the large timestep cases converged.  This 

will be explained in the theoretical analysis below. 

 

8.4.1 Spectral Radius – Linearized Routine 

 

The numerical performance of the linearized routine has been shown.  Given the behavior 

seen in Figure 47, focus was shifted to a Fourier analysis of the iteration routine.  Fourier 

analysis provides a means to analyze the stability of a linear numerical routine with some 

implicit assumptions.  The most restrictive assumption is that the analysis assumes a time 

independent infinite homogenous medium.  The analysis therefore begins by using the SS 

form of the equation linearized about the infinite medium constant. 
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Define the outer iteration error as the difference between the exact equation and the 

discretized equation: 
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Subtracting the iteration equation from the exact equation and using the error definitions: 
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The Fourier analysis assumes that the error iterate takes the following form: 

 where the first term on the right hand side represents the 

angular amplitude and the second represents spatial modes where 

( )( ) ( )( ) xill eAx ωμμε ⋅= ++ 11 ,

ω  is a real wave 

number. 

 

This form for the error is then plugged into the error equation: 
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It is assumed that there is linear independence of each of the ω  error modes such that: 
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A relationship between the error amplitudes at successive iterations is found from: 
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The quantity on the left hand side is angular dependent, while the terms on the right are 

scalar.  To eliminate this problem, the relationship is then integrated over the angular 

domain of [-1,1] to yield: 

 ( ) ( )

( )
⎟
⎠
⎞

⎜
⎝
⎛

Δ⋅
+Σ+−

⎟
⎠
⎞

⎜
⎝
⎛

Δ⋅
+Σ+

⋅⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

Δ⋅
+Σ+−

⎟
⎠
⎞

⎜
⎝
⎛

Δ⋅
+Σ+

⋅
⋅
Σ

−⋅ ∞+

tv
i

tv
i

i
N

A

tv
i

tv
i

i
A

T

T
l

T

T
Sl

1

1

ln
'

1

1

ln
2

1 0
1

0

ω

ω

ωω

ω

ω
 (114) 

 

In compact form, the relationship between successive iterations can be expressed as: 
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It is noted that for multiple iterations, the relative change in the error amplitude can be 

found from: 
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To ensure numerical convergence it is necessary to show that ( ) 1max <ωγ
ω

 for all ω .  

The value of ω  that yields the maximum of ( )ωγ  is defined as the spectral radius, ρ , 

such that ( )ωγρ
ω

max= .  Plugging in the expression for ( )ωγ  and with some algebra: 
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A plot of the dispersion function, ( )ωγ , versus wave number,ω , is provided below for 

the full fission multiplicity and quadratic truncation. 
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Figure 48: Iteration amplitude as a function of the wave number. 

 

For both cases the largest value of ( )ωγ  occurs for the 0=ω  mode.  For the different 

fission truncations, the spectral radius will take on different values relative to the infinite 

multiplication factor.  The figure above shows that the spectral radius is greater than one 

for the quadratic truncation (2.135) and much less than one for the full multiplicity 

(0.152) at the 0=ω  mode.  The fact that the spectral radius is so large provides some 

clues as to why some of the quadratic cases would not converge.  Plugging this into the 

spectral radius relationship yields: 
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The results shown above were provided for a linearization constant equal to 2.  This 

constant corresponds to the linearization performed over the first timestep.  Numerically, 

the linearization constant is taken to be the converged spatial solution obtained from the 

previous timestep.  The Fourier analysis requires the system to be infinite, and thus there 

is no spatial dependence.  Despite this, the magnitude of the spatial profile obtained 

numerically after successive iterations decreases as the POI is approached.  The 

linearization constants (spatially varying or not) will thus decrease to the POI at late 

times.  Since the linearization constant changes as the simulation progresses it is of 

interested to examine the impact on the spectral radius.  The figure below plots the 

spectral radius for each of the fission multiplicities as a function of the linearization 

constant used.  Numerical values are also added to the plot.  The numerical curves were 

generated by taking a very large slab size (to approximate an infinite system) and then 

adjusting the linearization constant initially used over the first timestep (instead of using 

2, any desired value may be inserted). 
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Figure 49: Spectral radius for different multiplicities and linearization constants with a large 

timestep. 
 

Two sets of curves are provided: one set for the quadratic truncation and the other for the 

full multiplicity.  Two sets of abscissa are shown.  The upper axis describes the constant 

for which the non-linear terms are linearized about.  The lower axis shows the 

linearization constant for the SS POI as a function of the system multiplication factor.  

This axis is included to highlight what the final POI value (or linearization constant) 

would be for a given multiplication factor.  The figure indicates that the numerical results 

agree well with the theoretical results across all system multiplication factors.  

Numerically the simulation begins by setting the linearization constant to 2.  The spectral 

radii at this value match those shown in Figure 48.  As the POI is approached, the 
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spectral radius is found to increase for both multiplicities.  This becomes problematic for 

the systems of interest to this work.  As noted by the lower abscissa, systems with 

multiplication factors near unity have small corresponding POIs which thus result in a 

large spectral radius.  For all the cases where the spectral radius becomes greater than 

unity shows that the numerical routines should not be able to converge over the first 

timestep.  Some non convergence was previously shown for the quadratic truncation.  

Why these cases converge at all will be illustrated shortly. 

 

The behavior shown in Figure 49 indicates a significant convergence problem around 

either the initial condition (quadratic truncation) or as the solution approaches the SS POI 

(all cases).  As systems of interest in this work are finite in nature, there is a considerable 

amount of leakage from the slab.  Leakage from the system will greatly reduce the 

spectral radius as another loss term is included in the simulation that is not present in the 

Fourier analysis.  To better understand the connection between the theoretical and 

numerical spectral radius for systems of interest, these two are calculated for comparison. 

 

By adjusting the slab thickness, different system eigenvalues were achieved.  For both the 

quadratic and seven terms cases, the spectral radius calculated over the first timestep is 

shown below.  The first timestep is the only timestep for which the theory is valid 

(constant spatial solution) as after each timestep the ( )0pN  and  are updated from 

a spatially varying solution.  Over the first timestep these terms are linearized about 

 or  which are flat solutions.  A large timestep was used to r

the time absorption term. 

( 0' pN )

emove 20 =p POIpp == ∞0
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Table 12: Numerical and theoretical spectral radius over the first timestep. 
2 terms 7 terms 

keff 
slab thickness 

(cm) 20 =p  ∞= pp0  20 =p  ∞= pp0  
1.001 9.3912 0.9816 0.0818 0.0696 0.1294 
1.01 9.5094 0.9901 0.0825 0.0703 0.1309 
1.1 10.749 1.0787 0.0899 0.0766 0.1422 
1.25 13.100 1.2258 0.1022 0.0870 0.1616 
1.5 18.274 1.4709 0.1226 0.1044 0.1940 
1.75 26.806 1.7165 0.1431 0.1221 0.2264 
2.0 48.060 1.9613 0.1635 0.1391 0.2585 
2.1 77.355 2.0593 0.1714 0.1456 0.2707 

2.129 100.0 2.0880 0.1736 0.1473 0.2743 
2.155 150.0 2.1127 0.1755 0.1490 0.2743 
2.178 ∞ 2.1359* 0.1781* 0.1516* 0.2816* 

* Theoretical spectral radius. 

 

For the small slab thicknesses which result in low prompt multiplication factors 

applicable to FBRs, the calculated numerical spectral radius is significantly lower than 

the theoretical value (shown in the last row).  As the slab thickness was increased and the 

resulting slab eigenvalue approaches the infinite eigenvalue the spectral radius 

approaches the theoretical value.  The results highlight the importance of system leakage 

on the problem.  Leakage is such a prominent loss mechanism that the quadratic cases 

linearized about the initial condition only converge for marginally prompt critical 

systems ( )1.1<effk .  This explains why most of the quadratic cases shown previously did 

not converge for the large timestep.  If one is interested in ensuring that the theoretical 

spectral radius is always smaller than unity, a timestep control could be invoked. 
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Solving Eq. 119 for time, the following timestep requirement can be invoked to ensure 

whatever spectral radius is desired: 

 

 
v

N

t
AΣ−

=Δ

∞

ρ
''2

 (120) 

 

There is another important point that can be addressed by the behavior seen in Figure 49.  

Although it was just previously mentioned that the theoretical result does not apply after 

subsequent timesteps, the theory can be used to provide an indication of the numerical 

behavior seen after multiple timesteps.  In particular, regardless of the initial linearization 

constant used, the spatially dependent solution always tends to the SS POI appropriate for 

the system of interest.  It has been shown throughout this work that weak prompt critical 

systems typically have small values for the POI, roughly 10-2 – 10-3.  The curves in 

Figure 49 show that as the POI value is approached, the spectral radius grows.  This 

indicates that as the POI value is approached, numerical convergence becomes more 

taxing; in particular for systems with small multiplication factors. 

 

This behavior, where the spectral radius increases, was also found numerically.  To 

highlight this, a case is presented below for the full multiplicity, , linearized 

about  for a large timestep.  The columns show the simulation timestep, the 

number of outers in each timestep, the spectral radius over the timestep, and the non-

001.1=effk

20 =p
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extinction probability at the slab edge and midpoint.  The data shown in the table matches 

that of the  case shown in Figure 46001.1=effk . 

 

Table 13: Spectral radius for multiple timesteps. 
timestep outer iterations spectral radius ( ) 22/0 Lp  ( ) 20 Lp  

1 10 0.0697 0.399933 0.184630 
2 29 0.4644 0.185793 0.075090 
3 61 0.7181 0.089599 0.035488 
4 119 0.8557 0.044191 0.017458 
5 224 0.9271 0.022168 0.008755 
6 414 0.9633 0.011327 0.004473 
7 755 0.9816 0.005955 0.002351 
8 1357 0.9908 0.003294 0.001301 
9 2385 0.9953 0.001997 0.000789 
10 3979 0.9976 0.001405 0.000555 
11 5725 0.9986 0.001194 0.000472 
12 5753 0.9989 0.001158 0.000457 
13 2656 0.9991 0.001157 0.000457 
14 11 0.9995 0.001157 0.000457 
15 1 - 0.001157 0.000457 

 

Initially the spectral radius is small, which is in agreement with Figure 49 for the seven 

terms case.  As the simulation progresses and the non-extinction probability approaches 

the SS POI for this system, the outer iteration count significantly increases.  This is borne 

out by the increase in the spectral radius.  As was indicated in Figure 49, the spectral 

radius continues to grow as the POI is approached.  Although the theoretical spectral 

radius at the POI is greater than one, system leakage is the means by which the 

simulation is able to converge.  It is worthwhile to note that for all the cases of interest in 

this work, no cases were found in which the numerical spectral radius exceeded one as 

the non-extinction probability approaches the POI for the full multiplicity.  The fact that 

this was observed was merely a matter of chance.  As shown in the table above, the 

 
 

- 168 - 



www.manaraa.com

 

spectral radius is near unity, but it was always less than unity.  Although thicker systems 

with less leakage should have higher spectral radii, the non-extinction probability for 

these systems is also larger in magnitude.  To reiterate what was found numerically, all 

the combinations of non-extinction probabilities and leakage rates resulted in systems 

which always converged with the exception of the quadratic case with a large timestep. 

 

8.5 Accelerated Linearized Lagged Fission Source Routine 

 

It was shown above that the spectral radius was defined by the 0=ω  wave number.  To 

try to reduce this mode an acceleration scheme was sought which would dampen the 

0=ω  mode without affecting the convergence of the other modes.  In other words, one 

seeks to improve the numerical performance by reducing the importance of the zero’th 

mode without inadvertently causing one of the other modes to become more dominant 

and larger than the un-accelerated case.  The 0=ω  mode is the flat spatial mode which 

corresponds to an infinitely long wavelength and suggests that a diffusive estimate of the 

error may improve the performance.  It is known that this offending mode is also found 

when solving the neutron transport equation (Adams 2002).  The time absorption term, 

can become problematic when very large timesteps are taken since taking an “infinite” 

timestep results in the worst case spectral radius.  When small timesteps are used, the 

spectral radius decreases significantly in magnitude due to time absorption.  It can be 

shown that by shrinking the simulation timestep to a sufficiently small value that the 

spectral radius can always be reduced to below unity. 
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Beyond the iteration techniques described previously, there exists a large class of 

acceleration techniques commonly employed when solving the neutron transport 

equation.  One method that is widely used is that of diffusion synthetic acceleration.  

DSA is commonly used not because the solution depends on diffusion theory being a 

good approximation to transport theory; rather it only makes use of the diffusion solution 

as an error corrector.  Acceleration is performed on the outer iterations by applying an 

error corrector calculated from a modified diffusion update.  Multiple authors have 

investigated using DSA for solving the standard transport equation.  For complete details, 

the reader is guided to works provided by Alcouffe 1977, Larsen 1982, and Adams 2002. 

 

During the development of this work, it became clear that the performance of the outer 

iterations could be improved.  An accelerated routine was formulated to increase the rate 

at which the outer iterations would reach the specified convergence criteria.  The 

acceleration scheme on the outer iteration is outlined as follows.  The outer iteration 

shown previously is modified such that the index is shifted: 
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A half index is used to denote that the error update occurs after the converged inner 

solution.  Define the error as the difference of the iteration equation from the exact 

equation: 

 ( ) ( ) ( ) ( ) ( )μμμε ,,, 2/12/1 xpxpx ll ++ −=  and ( ) ( ) ( ) ( ) ( )xpxpx ll 2/1
00

2/1
0

++ −=ε  (122) 
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Subtracting the iteration equation from the exact equation yields: 
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The bracketed difference in the second term on the right hand side can be rewritten as: 
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Plugging this into the error equation: 
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For simplification, let  represent a residual such that: oR

 ( ) ( ) ( ) ( ) ( )( )xpxpNxR ll
o 0

2/1
0' −⋅= +

∞  (126) 

 

The error equation then becomes: 
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Upon solution of the above equation for ( ) ( )με ,2/1 xl+  an update to the original outer 

iteration can be obtained from: ( ) ( ) ( )2/1
00
++ llp ε1

0
+ =lp  where ( )lp0  is the solution from the 

converged inner iteration and ( )2/1
0
+lε  is the solution from the error update. 

 

Given that solution of the error equation is just as complicated as the original outer 

iteration equation, a low order diffusive approximation is used for the error update. 

 

To define this new equation, the error equation is integrated over the angular domain      

[-1,1] to obtain to obtain the first moment: 
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over the angular domain once ag

moment: 

 

Integrating the error equation ain to obtain the second 

( ) ( ) ( ) ( ) 02/1
1
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T

l

ε
ε  (131) 

 

where .  Since the error equation is isotropic, a diffusion 

ansatz is introduced: 
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Inserting this expression into the angular integrated equation yields: 
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The low order approximation for the error can thus be found through solution of: 
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where 
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 For the i = I cell 
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The error update on the slab interior is: 
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hen written in matrix format, the resulting matrix is tridiagonal.  A standard tridiagonal 

matrix solver is invoked to solve the error update at the slab edges. 
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here:  
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Solution of  provides the error update with each term being defined at the cell 
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pdated  was then used in the next outer iteration (assuming convergence was not  1
,0
+l

jpu

obtained) for calculating ( )l
jj pN ,0,' ⋅∞ . 

 

8.5.1 Spectral Radius – Accelerated Linearized Routine 

 

To examine the perform acceleration scheme, a Fourier analysis was 

also perform equations of interest for the analysis: 

1. Non-extinction probability outer iteration from Eq. 121: 
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2. Diffusion low order error approximation from Eq. 135: 
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3. Update equation: 
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troduce the following: In

( ) ( ) ( )( ) xie ωμ ⋅  (145) ll Axp μ = ++ 2/12/1 , 

( )( ) ( ) xill eAxp ω⋅= 00  (146)  

 ( )( ) ( ) xill eEx ωε ⋅= ++ 2/1
0

2/1
0  (147) 

 

sert these into the outer iteration equation to yield: In
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Again assuming the linear independence of each of the 

 

ω  modes such that: 
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Rearranging: 
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Integrating this equation over the angular domain [-1,1] 
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Rearranging: 
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or 
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Note that ( )ωγ  is the same as that shown in the previous Fourier analysis.  Repeating the 

process for the low order diffusion equation yields: 
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which simplifies to: 
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Using the equation above, 
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he solutions from the two equations can be combined through: 
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erforming the combination yields: P
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T

 

he spectral radius for the accelerated scheme is then defined from: 

 ( )ωρ Γ= max  

 

As was noted for the unaccelerated case, to ensure conditional convergence it was 

necessary

ω
(159) 

 to show that ( ) 1max <Γ ω
ω

 for all ω .  The figure below plots the dispersion 

nctions, ( )ωΓ  and repeats ( )ωγfu , as a function of the wave number for parameters of 

interest. 

 

 
Figure 50: Dispersion functions versus wave number for the accelerated scheme linearizi

20

ng about 
=p . 
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For both the quadratic and full multiplicity, it is noted that the amplitude of the 0=ω  

error mode is zero in the accelerated case and the corresponding spectral radius is sm

The acceleration scheme has eliminated the offending mode without deleteriously 

affecting the convergence of the other modes.  For the unaccelerated cases the large

iteration amplitude for the quadratic multiplicity was ~2.135, while the accelerated 

scheme shows the largest amplitude is 0.1061 for the quadratic and 0.0093 for the s

terms.  The accelerated scheme shifts the spectral radius to a slightly greater wave 

number, yet there is a remarkable decrease in the iteration amplitude.  The acceleration 

effectively suppresses the error modes corresponding to 

all.  

st 

even 

strong angular and spatial 

ependence (as seen in the unaccelerated case above) and modes that have weak angular 

and spatial dependence (where the unaccelerated case struggled).  Thus the acceleration 

should significantly improve the iteration performance. 

 

ase 

nvalue.  To develop systems 

ith a wide class of eigenvalues, the capture density was increased to lower the infinite 

m

lin ing about the  and the POI. 

 

d

8.5.2 Reflected Spectral Radius – Accelerated and Unaccelerated 

 

As a means to ensure that the acceleration was working properly, a simplistic case was 

evaluated where reflective boundary conditions were put on the slab edge.  For this c

the system eigenvalue becomes identical to the infinite eige

w

edium eigenvalue.  Results are presented below for the quadratic truncation when 

eariz initial condition
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14: arison of accelerated vs. unaccelerated results for re undary con tions 
when lin

Table Comp flecting bo di
earizing about 20 =p . 

Unaccelerated Accelerated k∞ 
outers theoretical ρ nu ρ outers theoretical ρ nu ρ merical merical 

1.001 733 0.9816 0.9816 2 0.1070 - 
1.01 1346 0.9905 0.9905 2 0.1078 - 
1.10 dnf 1.0787 1.0787 2 0.1155 - 
1.25 dnf 1.2258 1.2258 2 0.1265 - 
1.50 dnf 1.4710 1.4709 2 0.1414 - 
1.75 dnf 1.7162 1.7161 2 0.1529 - 
2.00 dnf 1.9613 3 0.1620 0.1134  1.9613 
2.10 dnf 2.0594 3 0.1159 2.0594 0.1652 

 

 

on of accelerated vs rated results for re oundary co itions 
hen lin

Table 15: Comparis . unaccele flecting b nd
w earizing about = ∞pp . 0

Unaccelerated ated Accelerk∞ 
outers theoretical ρ nu ρ outers theoretical ρ nu ρ merical merical 

1.001 11658 0.9990 0.9990 2 0.1095 - 
1.01 1390 0.9900 0.9900 2 0.1078 - 
1.10 155 0.9000 0.9000 2 0.0916 - 
1.25 61 0.7500 0.7500 2 0.0691 - 
1.50 27 0.5000 0.5000 2 0.0399 - 
1.75 14 0.2500 0.2500 3 0.0176 0.3716 
2.00 3 0.0000 0.0027 3 0.0000 0.3495 
2.10 8 0.1000 0.0999 3 0.0062 0.0888 

 

With reflective boundary conditions the numerical values match the theoretical ones quite 

well.  Numerical spectral radii are not provided for the all accelerated cases as at least 

three iterations are necessary for a spectral radius to be calculated.  With these results in 

on function, the acceleration should be more 

efficient; in particular since it agreed well with the theoretical results.  To examine the 

behavior of the acceleration with the linearization constant, the dispersion function for 

the acceleration was plotted against different linearization constants. 

 

hand, as well as the plots of the dispersi
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Figure 51: Iteration amplitude versus wave number for different linearization constants. 

 

For linearization constants greater than one, the maximum value of ( )ωΓ  is always less 

than unity.  As the linearization constant continues to decrease, it is observed that the 

amplitude of a mode with wave numbers very close to zero suddenly grow significantly 

and reduces the effectiveness of the acceleration scheme.  As the linearization constant 

decreases, different “resonances” appear.  These resonances at quite large in magnitude 

and also appear at different wave numbers.  Thus the acceleration does an effective job at 

reducing the offending mode for large linearization constants, but appears to excite 

another mode for small linearization constants. 

 

To highlight the regions where the resonances appear, the spectral radius was plotted 

against the range of linearization constants. 
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Figure 52: Spectral radius for the accelerated routine for different linearization constants. 
 

As a function of the spectral radius, the breakdown in the acceleration can be readily seen 

for different linearization constants.  For the range of area where the theoretical values 

could be compared to the numerical ones, excellent agreement was found. 

 

To highlight where the acceleration breaks down, one must revisit the update equation 

Eq. 135: 
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As all of the cross-sections are treated as time independent, the only parameter that is 

varying as a function of time is .  Problems can arise if the second term on the LHS 

becomes negative.  To understand when this occurs, this term is plotted in the figure 

below for both a small and large timestep for the range of applicable linearization 

constants. 

∞'N

 

 
Figure 53: Diffusion update breakdown. 

 

The two curves corresponding to a small timestep indicate that this term is always 

positive regardless of the linearization constant.  As the timestep is increased the time 

absorption term approaches zero and the term becomes negative.  The constants for 

which these cases become negative are noted in the figure.  The problem with the error 

update can be attributed to the fact that systems of interest ultimately have small 

linearization constants.  Since most of the cases of interest have SS POI values that are 
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much lower than 0.54, the breakdown in the spectral radius will be present for almost all 

cases. 

 

The time absorption term was just shown to prevent the error update from breaking 

down.  Given this, the minimum timestep required to prevent the update from breaking 

down can be found.  The minimum timestep requirement can be invoked to prevent the 

term 
Ac

N
tv ∞⋅−

Δ⋅+
'21

1  from becoming negative.  Rearranging the term, the timestep 

requirement becomes: [ ]AcNv
t

−⋅
<Δ

∞'2
1 .  This expression is plotted as a function of the 

linearization constants for which the term was negative. 

 

 
Figure 54: Timestep requirement for acceleration surety. 
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For large linearization constants, there is no minimum timestep required.  As the 

linearization constant decreases, the timestep required to ensure the acceleration scheme 

does not breakdown decreases significantly.  The slope of the curves in the above figure 

shows that the timestep required decreases significantly with modest decreases in the 

linearization constants.  As the constant approaches the SS POI value, the minimum 

timestep approaches a value of ~13 ns.  As a proof of principle, the timestep logic was 

built into the linearized code.  As the simulation progressed forward in time, the timestep 

would decrease in value.  Ultimately the timestep would get to such a small value ~13 ns 

that it was faster to simply leave the acceleration on and resort to the large timestep than 

to try to keep the term positive. 

 

8.6 1-D Numerical Performance 

 

The results presented above indicated that the spectral radius could be reduced by using 

an error update on the outers; however, the acceleration would eventually breakdown as 

the POI is reached.  To illustrate the performance of the accelerated scheme against the 

unaccelerated case, the results presented previously are combined in a concise format for 

comparison. 

 

The number of outer iterations to reach SS is shown below when first linearizing about 

 and a large timestep and the full multiplicity.  Small timestep cases are not 

included as there were only a few iterations per timestep for the unaccelerated case and 

acceleration was unnecessary. 

20 =p
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Figure 55: Combined outers to SS for accelerated and unaccelerated cases linearizing about 20 =p  

with full multiplicity. 
 

The combined plot highlights the outer iteration count for both the accelerated and 

unaccelerated cases.  For large multiplication factors, the acceleration provides some 

relief; yet the overall iteration count is low.  For weak prompt critical systems, both cases 

suffer from large iteration counts.  As the iteration proceeds closer and closer to the SS 

POI, convergence becomes more challenging even with the acceleration turned on. 

 

In addition to the full multiplicity plot shown above, the quadratic truncation plot is also 

of interest. 
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Figure 56: Combined outers to SS for accelerated and unaccelerated cases linearizing about 20 =p  

with quadratic truncation. 
 

The accelerated cases for the quadratic truncation show that the iteration count is similar 

to that of the full multiplicity case.  Only two unaccelerated cases are shown as the 

spectral radius was shown previously to become greater than one for the higher 

multiplicity cases.  For this figure, the acceleration clearly helps the initial iteration 

behavior allowing the higher multiplication factor cases to converge. 

 

Cases are not presented for linearizing about the infinite medium constant as the results 

are quite similar to the full multiplicity case when linearizing about .  This holds 20 =p
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true for both the quadratic and full multiplicity cases as one would expect based on the 

behavior seen in the figure of the spectral radius plotted against the linearization constant. 

 

To better understand what is numerically occurring, it is useful to show the functional 

shape and magnitude of the DSA error update.  It is challenging to plot as there is an 

error update in each outer iteration and the figures above show that there are many outer 

iterations per timestep.  To circumvent this problem, only the error update in the first 

outer iteration is provided for the indicated timestep using the small multiplication factor 

case of 1.001.  The figure below plots the angular integrated spatially dependent error 

update profile. 
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Figure 57: Error update in the first outer iteration vs. timestep. 

 

The error updates for the large timestep case are all negative in sign for the first outer 

iteration and thus act to dampen the solution.  After multiple timesteps, the resulting error 

correction becomes negligibly small.  Thus the large correction seen in the first few 

timesteps helps explain why the error update does an effective job at accelerating the 

outers.  After multiple timesteps the error update is small and only marginally improves 

the converged non-extinction probability from the inner iterations.  Since the update 

breaks down after the first few timesteps, the error update appears to still be beneficial as 

the overall update is still small and negative.  If the resulting update had been positive, 

the numerical routine would have likely lost stability. 
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8.7 Simulation Time 

 

Iteration counts are useful to understand the total number of operations the computer is 

performing.  All things being equal, the different iteration routines presented do not 

perform the same amount of work for each iteration.  Users of transport codes are not 

typically interested in iteration counts; rather, interest lies in the computer run time.  Due 

to the large difference in run times for each of the schemes shown earlier some discussion 

is warranted.  The table below provides the computer runtime for a wide array of cases.  

These cases were run on a dedicated 2.4 GHz laptop with no compiler optimizations. 

 

Table 16: Computer runtime (sec) for small timestep cases full multiplicity. 
Linearized p0=2 Linearized p0=p∞ keff Fixed 

Point 
Iteration 

Lagged 
Routine unaccel accel unaccel accel 

1.001 352.64 537.28 708.38 281.86 711.98 279.88 
1.01 73.20 140.17 182.25 60.61 193.22 60.11 
1.1 14.00 30.59 40.03 12.58 40.56 12.63 
1.25 7.86 17.02 22.42 7.40 22.47 7.38 
1.5 5.58 11.72 15.44 5.44 15.53 5.59 
1.75 4.91 9.88 13.06 4.72 13.22 4.84 

2 4.58 8.97 11.93 4.42 12.06 4.42 
2.1 4.70 8.78 12.00 4.36 11.75 4.61 

 

The unaccelerated linearized routine resulted in the poorest performance.  Including the 

acceleration proved to be the fastest routine.  Similar results are provided for the large 

timestep cases. 
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Table 17: Computer runtime (sec) for large timestep cases full multiplicity. 
Linearized p0=2 Linearized p0=p∞ keff Fixed 

Point 
Iteration 

Lagged 
Routine unaccel accel unaccel accel 

1.001 49.56 141.80 314.11 9.00 519.09 11.41 
1.01 6.97 27.59 77.09 2.20 83.86 1.98 
1.1 1.02 4.86 15.08 0.81 14.78 0.53 
1.25 0.55 2.53 7.67 0.50 7.59 0.41 
1.5 0.39 1.66 4.80 0.42 5.00 0.41 
1.75 0.34 1.36 3.78 0.47 4.05 0.44 

2 0.42 1.31 3.53 0.56 3.72 0.53 
2.1 0.61 1.47 3.53 0.63 3.63 0.67 

 

The acceleration appears to significantly reduce the computer time needed to reach SS, in 

particular for the low multiplication factors of interest.  For large timestep cases, the error 

update shows its utility.  In particular for the weak prompt critical systems of interest, run 

times decreased from many minutes to a few seconds.  Despite the breakdown in the 

acceleration which would have rendered it even more effective, the significant decrease 

in run time highlights its effectiveness. 

 

8.8 Sources of Error 

 

Throughout the linearization analysis, there have been two sources of error.  The first 

corresponds to the time discretization error, which is ( )to Δ .  The second corresponds to 

the linearization error.  As the simulation timestep is increased, both of these error terms 

become more dominant.  The time discretization error is more obvious and can be easily 

handled by implementing a higher order scheme. 
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The linearization error should be at its highest when the linearization is performed about 

the initial condition for large timesteps.  Physically, the system is linearized about a value 

that is identical to the initial condition but far away from the SS POI.  The role of the 

linearization error can be seen by examining the non-extinction probability between the 

lagged source routine (where there was no linearization) and the linearized source 

routine.  The figure below plots all three cases for several multiplication factors, seven 

terms, and a large timestep. 

 

 
Figure 58: Non-extinction probability comparison between the linearized and lagged iteration 

routine. 
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The lagged source routine reaches SS in a few iterations.  In fact, after the first iteration 

the SS POI is almost obtained.  For the linearized routine one can see that both 

linearizations require multiple timesteps to reach the SS POI.  The linearization about 

 is the furthest from the SS POI and takes more iterations to reach the same non-

extinction probability as the other cases.  One can see that as the multiplication factor 

gets large, there is little difference between either linearization or between either iteration 

routine. 

20 =p

 

The results shown in the above figure indicate that the lagged routine and the linearized 

routine ultimately yield the same SS POI.  This is only partially correct.  As the linearized 

routine is solving a different, linear equation, the time dependent results are 

understandably different.  The fact that the linearized routine ultimately yields values 

close to the SS POI highlights the capability of the routine.  The table below provides 

results for the SS POI from the different iteration routines tried in this work. 
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Table 18: SS non-extinction probability from different iteration routines with a small timestep. 
Linearized p0=2 Linearized p0=p∞ keff Fixed 

Point 
Iteration 

Lagged 
Routine unaccel accel unaccel accel 

1.001 0.0011565 0.0011572 0.0011572 0.0011572 0.0011572 0.0011572 
1.01 0.0115412 0.0115413 0.0115413 0.0115413 0.0115413 0.0115413 
1.1 0.1109860 0.1109860 0.1109860 0.1109860 0.1109860 0.1109860 
1.25 0.2613891 0.2613891 0.2613891 0.2613891 0.2613891 0.2613891 
1.5 0.4785058 0.4785058 0.4785058 0.4785058 0.4785058 0.4785058 
1.75 0.6602619 0.6602619 0.6602619 0.6602619 0.6602619 0.6602619 

2 0.7956149 0.7956149 0.7956149 0.7956149 0.7956149 0.7956149 
2.1 0.8216860 0.8216860 0.8216860 0.8216860 0.8216860 0.8216860 

 

The small timestep results show that the standard source iteration and lagged iteration 

routine yield identical SS POI values.  The linearized cases, both accelerated and 

unaccelerated, yield excellent agreement with the lagged routine.  Results for the large 

timestep are also presented. 

 

Table 19: SS non-extinction probability from different iteration routines with a large timestep. 
Linearized p0=2 Linearized p0=p∞ keff Fixed 

Point 
Iteration 

Lagged 
Routine unaccel accel unaccel accel 

1.001 0.0011565 0.0011567 0.0011567 0.0011565 0.0011567 0.0011565
1.01 0.0115412 0.0115412 0.0115412 0.0115412 0.0115412 0.0115412
1.1 0.1109860 0.1109860 0.1109860 0.1109860 0.1109860 0.1109860
1.25 0.2613891 0.2613891 0.2613891 0.2613891 0.2613891 0.2613891
1.5 0.4785058 0.4785058 0.4785058 0.4785058 0.4785058 0.4785058
1.75 0.6602619 0.6602619 0.6602619 0.6602619 0.6602619 0.6602619

2 0.7956149 0.7956149 0.7956149 0.7956149 0.7956149 0.7956149
2.1 0.8216860 0.8216860 0.8216860 0.8216860 0.8216860 0.8216860

 

The large timestep cases also show excellent agreement between all of the cases 

analyzed.  Thus even though the linearized cases take more timesteps to reach SS, the 

ability to use acceleration to speed up the simulation and to still achieve the SS POI again 

highlights its utility. 
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CONCLUSIONS 

 

Efforts have been extended to develop the theory surrounding stochastic neutron chains 

as well as divergent chain buildup.  Solutions were developed for a 0-D system to 

understand divergent chain buildup and eventually how long it takes for this buildup to 

occur.  The fundamental quantity of interest, the non-extinction probability, has been 

thoroughly investigated for systems of interest as well as those outside of the desired 

phase space.  The importance of the dynamic reactivity insertion was investigated, 

including the impact of a source.  When the 0-D results were extended to a SPR type of 

system, parameters such as source strength, insertion time, and the maximum over-pulse 

were investigated.  The theory shows that with some assumptions it can be used to 

determine the maximum pulse achievable on the fast burst type of reactor. 

 

A 0-D Monte Carlo code was written to allow for divergent chain buildup.  Excellent 

agreement is found between the results and the theory.  In addition, the Monte Carlo 

results were able to provide additional time dependent behavior that the deterministic 

results could not.  Although the code was viable for allowing divergent chains to buildup, 

computational time proved to be a daunting task. 

 

The deterministic work was extended to examination of a 1-D slab system.  Time 

dependent solutions were found for both static and dynamic reactivity.  Multiple iteration 

routines were developed for investigation of numerical convergence.  The standard fixed 

point iteration routine was robust to solve the problems of interest, yet suffered large 
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iteration counts.  A modified lagged routine was developed which pulled the non-linear 

terms into an outer iteration and then held them fixed over the inner sweep.  The iteration 

count was shown to improve for certain regions.  To examine the numerical performance 

and to investigate the potential for an acceleration scheme, a linearized routine was 

developed.  The spectral radius for the standard cases was shown to be very close to one 

for the systems of interest.  Given this, an acceleration scheme was developed.  The 

theoretical spectral radius showed that offending mode was sufficiently suppressed such 

that acceleration should be guaranteed.  For the first few timesteps this was generally 

true.  It was found that while suppressing the offending mode in turn excited another 

mode causing the acceleration scheme to break down as the POI was approached.  Once 

the acceleration loses its effectiveness, only marginal improvement was found in iteration 

counts, yet the decrease in simulation time was notable.  While iteration counts are of 

interest, the real metric is the simulation run time.  The acceleration of the linearized 

routine provided the fastest runtime and allowed all of the quadratic cases to converge 

which highlights the utility of the routine. 
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FUTURE WORK 
 

It was shown previously that the acceleration scheme for the linearized routine lost 

effectiveness after multiple timesteps.  The diffusion update should be further examined 

to see if the update can maintain its effectiveness.  In addition, investigation of other 

acceleration routines should be pursued to see if unconditional convergence can be found.  

Since most production transport codes use similar routines to those outlined in this work, 

there is potential that such codes could be simply modified to solve a new class of 

problems.  Although the non-extinction probability is non-linear, it was shown that by 

linearizing the equation that a modified source iteration routine could effectively solve 

the non-extinction equation. 

 

Another area which warrants further investigation is to revisit the ratio of the linear to 

non-linear spatial solutions.  Since the linear spatial solution well approximates the non-

linear solution for marginally prompt critical systems, a systematic method to derive a 0-

D equation from the 1-D solution at long times where the fundamental adjoint mode has 

developed is of interest.  It was shown that the non-linear spatial mode is quickly 

developed such that solution of the spatial solution at each timestep may not be 

necessary.  In other words, the mode does not change shape as a function of time, it 

merely relaxes to the SS POI.  The time dependent importance may then be addressed 

through an enhanced point model which will allow for very fast simulation time. 
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Finally, a more extensive comparison should be provided to the SPR reactor.  Some of 

the historical operating data gathered is presented in the subsequent appendix.  Relating 

the experimental data to the solution for ( )tPN  can be performed by summing over  

large enough to the point where an experimental pre-initiation occurs.  Further efforts are 

warranted to relate the non-extinction probability to solutions for  and to 

understand the limitations of the relationship.  In conclusion, an investigation is 

warranted for determining how well analytical and numerical solutions can be used to 

support future reactor designs with respect to pre-initiation to ensure safety while 

operating in the prompt critical regime. 

N

( )tPN
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APPENDIX A: SPR OPERATIONS AND EXPERIMENT RECORDS 
 

To support the theoretical analysis presented in this document, data mining efforts were 

performed for previous SPR-III operations.  A number of data points were collected for 

free field operations as well as some with experiments.  This appendix highlights a 

portion of the experimental information extracted from the operational history.  As 

controlled experiments could not be performed due to reactor availability, the data should 

only be used to provide an indication of the behaviors presented.  Unfortunately, there is 

too much uncertainty with the data for it to be a viable benchmark against the previous 

numerical results.  Prior to examining the experimental data, some discussion is 

warranted. 

 

A.1 Safety Basis Treatment 

 

For relatively recent fast reactor machines, a safety basis document which authorized the 

operation of these machines was required to be developed to meet Department of Energy 

requirements.  For both SPR and Super Kukla, the probability of initiation was addressed 

in the safety basis documents.  Subsequent treatment in these documents is dramatically 

different and warrants some discussion.  For SPR-III the pre-initiation rate described in 

the authorization basis document (Ford 2005) is treated through Hansen’s paper and is 

only included to illustrate the phenomena (Hansen 1960).  It is noted in the safety 

analysis report for SPR that with a ~ $32/sec addition rate, it could be feasible (assuming 

there is sufficient excess reactivity) to get a few dollars above prompt before the 
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likelihood of pre-initiation becomes dominant.  The administratively controlled 

maximum pulse at SPR is limited to $1.126 which results in a temperature rise of 450°C 

with a cavity fluence of 6*1014 n/cm2 (Ford 2005).  The maximum over pulse as cited in 

the SPR safety basis is taken to be 40¢ above prompt ( ρ  = $1.40).  At this large of a 

reactivity addition, certain portions of the core are assumed to vaporize; some becomes 

liquid while others stay solid.  Nevertheless, a 40¢ pulse deposits ~132 MJ of energy 

locally in the fuel and results in significant core damage and potential down wind 

dispersal of fission products.  It takes a reactivity insertion of ~$1.226 to reach the 

melting temperature of U-10Mo at 1130°C (Ford 2005).  Development of a rock solid 

basis for the maximum over pulse is difficult.  Even though the reactor could achieve 

over pulses worth several dollars of reactivity, it only takes a few cents of reactivity over 

the maximum yield to exceed both the thermal and shock limitations of these machines. 

 

A.1.1 Super Kukla 

 

Due to its tie to this work, it is useful to describe Super Kukla.  The Super Kukla reactor 

was built to serve as an irradiation source using low enriched fuel.  It consisted of an 

annular shell with additional optional end reflectors on the annulus.  The reactor is 

nominally 37 inches tall, 6 inches thick, with an outer diameter of 30 inches.  The fuel 

was built of 20% enriched uranium of 10% molybdenum alloy.  The overall mass of the 

assembled reactor was approximately 4,500 kg.  Reactivity adjustment on the reactor was 

offered by six fuel rods that fit into holes in the core.  The maximum pulse was ~4x1016 

fissions in the core with a 500 μsec full-width at half-maximum which caused a peak 
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temperature rise in the fuel of ~280°C.  The nominal pulse regime was ~5-15¢ prompt 

(Gilbert 1964). 

 

During burst operation, the ganged rods could be inserted at speeds of 120 in/sec.  In 

addition, the machine was able to accommodate experiments from -$10 to +$4.  If there 

was insufficiently reactivity available, additional fuel could be added to the reactor to 

compensate (Gilbert 1964). 

 

Super Kukla was operated by Lawrence Livermore National Laboratory (LLNL) at the 

Nevada Test Site from 1965-1978 (LLNL 2003).  Due to its lower enrichment, the overall 

fissile mass needed to achieve the reactivity swings and pulse characteristics was rather 

large.  Due to its large size Super Kukla had several issues.  The first of these was that 

during a successful pulse, the reactor temperature rise was sufficient that it would take a 

long time to cool the massive core.  Typically only one pulse per day was realized on the 

machine.  In addition, it is known that Super Kukla suffered from a large pre-initiation 

problem.  It is anticipated that this was due to the physical size of the system (rapid 

movement of heavy masses) as well as the background neutron source strength. 

 

The Super Kukla safety basis document (Gilbert 1964) treats the pre-initiation probability 

as a simple decaying exponential with modified coefficients derived from Godiva.  

Discussion of Super Kukla is included in this work since the maximum over pulse is 

determined by a pre-initiation probability of 99.999%.  At that high of a rate of pre-

initiation, the largest over pulse credible for accident analysis was selected.  This over 
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pulse, worth 52¢, determines the maximum energy input into the reactor and hence the 

amount of U-10Mo vaporized from the excursion.  It should be pointed out that the pre-

initiation probability was derived for free field conditions for the machine.  It is readily 

known that irradiating objects can drastically change the behavior of the system as well 

as the pre-initiation probability.  While the pre-initiation treatment for SPR was more 

geared towards supplying information about how the reactor operates, it is interesting that 

the safety case for Super Kukla was built around the pre-initiation probability.  In order to 

support the large number of significant digits for the Super Kukla pre-initiation 

probability requirement, the safety basis document forces the machine to have a neutron 

source present of different magnitudes depending on the reactivity insertion rate that is in 

excess of the large background neutron source from spontaneous fission.  The required 

source strength varied from 3-5*105 n/s unmultiplied.  With subcritical prompt 

multiplications of ~150, it is clear that neutron source strengths of 107 n/s were be 

realized. 

 

A.2 SPR Experimental Results 

 

It was already discussed that if a significant reactor power was reached prior to the limit 

switch being contacted, a pre-initiation is said to have occurred.  At SPR this power limit 

is set to ~50 W.  Operations staff set this as an upper limit which provides a clear 

indication of a pre-initiation.  The overall magnitude of the power level is not important 

for operations.  A high level was set to ensure that the reactor did indeed begin an 

excursion prior to full burst element insertion. 

 
 

- 206 - 



www.manaraa.com

 

 

During a successful pulse operation, the burst element is fully inserted before the upper 

power level is reached.  The reactor will stay assembled for a finite period of time prior to 

one of the neutrons in the assembly leading to a divergent chain.  The length of time the 

reactor stays assembled is stochastic and depends on the level of neutrons originally in 

the machine and the system reactivity.  If no neutrons were present, the reactor would 

stay assembled at this prompt critical state indefinitely until a “stray” neutron(s) would 

set it off.  The background neutron rate for SPR is sufficiently high such that there are 

enough neutrons present to preclude the reactor staying assembled for any appreciable 

amount of time and are sufficiently low such that the full reactivity insertion can be 

realized without a pre-initiation.  The longest recorded time for the reactor fully 

assembled and not reaching ~50 W at free field conditions was ~ 1.5 seconds.  Once the 

prompt critical excursion has begun, the reactor ramps up in power very rapidly.  A 

typical e-folding time for large insertions is ~30 μs.  Upon ramping up in power, the fuel 

mass begins to expand radially.  It is this radial expansion, temperature increase in the 

fuel, and subsequent increase in neutron leakage that causes the initial shutdown of the 

core.  Subsequently the pulse element and safety block are also dropped via gravity to 

ensure an adequate shutdown margin.  It should be noted that for large pulses, the axial 

expansion of the reactor core has been shown to initiate the safety block breakaway prior 

to the breakaway signal reaching the core.  Thus for large insertions, the safety block 

“falls” faster than the pulse element. 
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These machines typically accommodate experiments of varying worths; the reactor must 

have available sufficient excess reactivity to overcome negative worth experiments.  

Although not credited as a safety feature of the SPR reactor, it has been questioned in the 

past if it is possible to design a reactor system such that there is an upper limit on the 

reactivity state that can be achieved before the reactor pre-initiates (similar to how Super 

Kukla was treated).  Experience has shown that for past FBR designs (Godiva and SPR-II 

specifically), the reactor is able to achieve significantly high powers such that some 

reactor disassembly occurs prior to pre-initiation becoming a dominant player (Wimett 

1956, Jefferson 1969).  For the SPR-II reactor, the machine was taken to excess power 

levels in an attempt to determine the maximum operating range for the machine.  A burst 

yielding a TΔ  of 606°C was sufficient to cause fracturing of the fuel plates.  Typical 

large yield pulses on SPR-III of $1.10 result in a TΔ  of ~300°C.  It is well known that 

systems with appreciable reactivity insertions that additional excess reactivity could be 

added to mechanically stress the machines.  The primary means of then precluding an 

over insertion of reactivity would be to either limit the excess reactivity or from a pre-

initiation perspective slow the insertion down, and/or increase the effective background 

source. 
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A.2.1 Free Field Experiments 

 

Limited values derived from SPR operation are presented in the table below for free field 

pulses.  The mean time to initiate the pulse (from all pulses in the range) as well as the 

standard deviation are shown.  The mean time represents the length of time the reactor sat 

at prompt critical prior to the pulse ensuing. 

 

Table 20: Mean time to initiate a pulse v. pulse size. 
Pulse Size Number Mean Time (ms) Standard Deviation (ms) 

100.0-100.9 19 498.7 317.3 
101.0-101.9 9 512.9 452.6 
102.0-102.9 15 342.2 303.2 
103.0-103.9 29 395.6 316.5 
104.0-104.9 7 309.7 247.7 
105.0-105.9 18 221.8 198.7 
106.0-106.9 18 237.0 178.5 
107.0-107.9 13 339.2 243.3 
108.0-108.9 33 240.3 240.0 
109.0-109.9 77 151.5 187.4 
110.0-110.9 13 263.5 305.1 

Total 251   
 

Even pulse ranges that had a large number of entries (i.e. the 9¢ pulse range) had a 

standard deviation that was sufficiently large (in fact larger than the mean).  Due to the 

limited number of data points it is difficult to assess whether the standard deviation is a 

good value.  Namely with an infinite number of data points it is known that there will still 

be a substantial variance about the mean (particularly at low reactivity states).  One 

cannot tell if the large standard deviation presented is due to the true variance or simply 

due to limited data points.  A general trend can be observed from the data such that the 

mean time to initiate a pulse is larger for slightly prompt critical pulses compared to the 
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larger pulses.  Given that the insertion speed and reflector worth are fixed, the decrease in 

mean time can be attributed to the fact that the reactor is initially more subcritical for the 

smaller pulses and that there is substantially more multiplication for higher reactivity 

states. 

 

As a part of the effort to better understand the pre-initiation probability at SPR, efforts 

were extended to examine previous operating histories for free field conditions.  A 

significant amount of data has been recorded for the > 13,000 operations on the reactor.  

Due to the low number of pre-initiations in the reactor for free field conditions it was not 

feasible to derive an experimental pre-initiation probability for free field conditions for 

all operating reactivity states.  For the entire set of free field pulses performed for SPR 

from 1985-2008, the figure below plots the reactivity state of the reactor as well as the 

assembly time at that reactivity state for free field conditions. 
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Figure 59: Pulse size v. time lag after assembly for free field conditions. 

 

It can be seen by the scatter plot above that the data are spread over various reactivity 

states.  For examination of the data in Figure 59, the pulse data was broken into 1¢ 

intervals.  The columns with experiment descriptions will be addressed later in further 

detail and are included here for organization. 
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Table 21: Group binning for assembly time distribution curves. 
Number in Bin Group 

Number 
Pulse Size 

(cents) Free 
Field 

Exp. 
Type I 
w/ Poly 

Exp. Type 
I w/o Poly 

Exp. 
Type 

II 
1 100.0 – 100.9 19 1 0 0 
2 101.0 – 101.9 9 0 0 0 
3 102.0 – 102.9 15 0 0 0 
4 103.0 – 103.9 29 29 4 0 
5 104.0 – 104.9 7 55 20 0 
6 105.0 – 105.9 18 172 21 0 
7 106.0 – 106.9 18 99 23 0 
8 107.0 – 107.9 13 91 45 0 
9 108.0 – 108.9 33 20 36 0 
10 109.0 – 109.9 77 33 13 155 
11 110.0 – 110.9 13 13 79 0 
12 111.0 – 111.9 0 6 94 0 
13 112.0 – 112.9 0 7 101 0 
14 113.0 – 113.9 0 25 4 0 
15 114.0 – 114.9 0 62 6 0 
16 115.0 – 115.9 0 1 75 0 
17 116.0 – 116.9 0 9 0 0 
18 117.0 – 117.9 0 1 0 0 
19 118.0 – 118.9 0 2 0 0 

TOTAL:  251 626 521 155 
 

With the available data for free field pulses, one is able to determine the probability that 

the reactor did not pre-initiate for a given reactivity state during the pulse element 

insertion time.  As the reactivity state of the reactor increases, the probability that the 

reactor will pre-initiate increases.  To some extent this trend can be observed in the data 

presented above.  Of the available data, these have been translated to normalized 

probability distribution curves for different reactivity states.  For time frames of interest, 

multiple bins were selected.  The number of pulses that resided in that bin was recorded.  

Each bin was then normalized to the total number of points (area under the curve is one).  

It was determined that about 7 time bins spread over 1200 ms was sufficient to capture 
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enough detail.  Of the data presented in Figure 59, there are only a few reactivity states 

which contain sufficient information to be useful. 

 

 
Figure 60: Normalized probability time lag after assembly v. reactivity state for free field conditions. 
 

The vertical axis, Normalized Probability, refers to the normalized probability that for a 

given reactivity state how long the reactor sat before the ~50 W power limit was reached.  

For the reactivity states that are shown, a few interesting details can be deciphered.  In 

particular, at low reactivity states, it appears that the normalized probability has an 

exponential shape with a long decaying tail.  As the system reactivity increases, this tail 

rapidly drops off and the probability of the machine staying assembled for long periods of 
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time drops off quickly.  In addition, for short time frames, it appears that there is a 

dependence on the probability from the reactivity state.  As the reactivity goes up, this 

probability becomes much sharper and implies that for large insertions (similar to that 

assumed in the safety basis document of $1.40) that it would be exceedingly difficult to 

reach that reactivity state before the machine would pre-initiate and terminate the pulse. 

 

A.2.2 Generic Experiments 

 

For the discussion to be complete, it is of interest to examine the large bodies of 

experiments that were performed as well.  Although this information does not describe 

free field conditions, it does relate how the reactor behaves under experimental 

conditions.  If future systems are built, free field conditions may not be indicative of the 

reactor performance and hence the pre-initiation probability.  In fact, as indicated 

previously, most operations on these machines do not meet free field conditions.  The 

focus of this section is to show that with pre-initiation probabilities derived for free field 

conditions, additional efforts are required for bounding experiments.  The details of the 

experiments presented below are unimportant; however, there were two types of 

experiments that were performed in large numbers over various reactivity states.  One 

type of experiment, named Type I, had two variations with similar test setups.  One case 

involved the use of a large piece of polyethylene and the other did not.  As such, these 

experiments are valid for comparison.  The overall worth of the experiment without the 

poly was ~ 130-160¢ and the experiment with the poly was worth ~ -210-240¢.  The 

other configuration, named Type II, was worth ~ 45-85¢ and involved a completely 
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separate experiment setup and materials.  There is no relation between Type I and Type II 

experiments.  The distribution of data for these experiments is shown in Figure 60 above. 
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Figure 61: Pulse size v. time lag after assembly for experiments with a large repetition rate. 

 

Each data point above was an individual pulse operation; for details on the grouping see 

Table 21.  To illustrate the difference between free field and experiment conditions, 2-D 

contour plots are presented below.  For bins that had few data points (like bin 100-100.9 

for the Type I experiments) they have been removed. 
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Figure 62: 2-D contour plots of the time lag after assembly for various experiments. 

 

From the contour plots, a discernable difference between the free field results and the 

three experiments shown.  For free field conditions, the assembly time distribution 

appears to have a decaying exponential shape as reactivity increases.  For the Type II 

experiment plot, there appears to be a less subtle shift in probabilities as reactivity 

increases.  For the two experiments with and without poly, there are striking differences.  
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The case without the poly has a longer probability tail at higher reactivities states and the 

case with poly has a gentler shift. 

 

The important feature to gather from the plots is that there differences between 

themselves.  This was not a large surprise as items irradiated with the reactor tend to 

modify the operational characteristics (neutron lifetime, pulse size, reactor period).  Take 

for example the large pulse sizes seen for the bottom two experiments in Figure 62.  

Notice the change between the Type I experiments with and without the polyethylene.  

As low Z materials act as neutron moderators, it is anticipated that higher reactivities 

could be achieved due to the longer neutron lifetimes.  The difference amongst the plots 

illustrates the point that if reactor designers are concerned with pre-initiation (especially 

for developing the safety case for it), examining the free field condition may not be 

indicative of how the reactor will operate with an experiment. 

 

A.3 Experimental Data Conclusions 

 

During the development of this work, it was desired to develop an experimental 

benchmark for SPR-III operation to compare it against theoretical results.  Due to limited 

reactor availability, these measurements could not be performed.  The data presented 

above were included to provide the reader with an overall understanding of how the 

theoretical results could be used to compare against reactor measurements.  Since 

controlled experiments could not be performed to compare the theory against, no attempt 

was made to correlate the two. 
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